[လျှပ်စဉ်] ຍ 30ວ နှင့် <mark>ဒီစီ မှ ဒီစီသို့</mark> ៤នាឲ័ RROYAL

http://www.khtnetpc.webs.com

For Knowledge & Educational Purposes

နားလည်တတ်ကျွမ်းသည်မှ အသက်မွေးဝမ်းကျောင်းနိုင်သည်အထိ လျှပ်စစ်ဓာတ်အား သုံးစွဲသူတိုင်းလက်စွဲ

ໍ່**ວິ:ວັງຊົ່:[ປິ່|[Cໍ້[ເຫຼ່ມ່ນນໍ**] ອຸຊະລວາະເບຼີເອອລວງ

ດງດງສາດດທູ່ເຼະຂ້ໍເ ພັຊຸລາໝາດມຸດຄູະຄຳ ເວັ່ນສູ່ຕີຊີ່ສູ່ສູ່ນີ້ ຂໍເຊັ່ ສູ່ສູ່ ສູ່ ສູ່ສູ່ສູ່ນີ້

အခြေခံမှစ၍ သိရှိနားလည်စေရန်နှင့် လက်တွေ့တည်ဆောက်နိုင်စေရန် ရေးသားပြုစုထားပါသည်။

ဦးအုန်းမြိုင် (လျှပ်စစ်)

အမှတ် (ဉ၎)(ဒုတိယထပ်)၊ ဂ၉_လမ်း ကန်တော်ကလေး၊ မင်္ဂလာတောင်ညွန့်မြို့နယ်၊ ရန်ကုန်မြို့၊ ဖုန်း ၀၁ – ၂ဂုဂု၆၄၉

မေ့ဘူးမောင် (လျှပ်စစ်) အမှတ် ၂ရငှ၊ အောက်လမ်းမကြီး၊ စစ်ကဲကုန်းရပ် မော်လမြိုင်မြို့ ဖုန်း ဝ၃၂–၂၁၆၅၅ မှ မြည်လုံးကျွတ်ဖြန့်ရှိပါသည်။

ဒိုတာ၀န်အရေးသုံးပါး

ပြည်ထောင်စု မပြိုကွဲရေး ဒို့အရေး တိုင်းရင်းသား စည်းလုံးညီညွတ်မှု မပြိုကွဲရေး ဒို့အရေး အချုပ်အခြာအာဏာ တည်တံ့ခိုင်မြဲရေး ဒို့အရေး

Our Three Main National causes

Non-disintegration of the union	Our cause
Non-disintegration of national solidarity	Our cause
Consolidation of National sovereignty	Our cause

' 'ပုံနှိပ်မှတ်တမ်း' '

ပထမအကြိမ်

၂၀၀၂ ခုနှစ်၊ ဇန်နဝါရီလ အုပ်ရေ (၁၀၀၀)

Section of the sectio

စာအုပ်စာတမ်းစာနယဇငးဆိုငရာမွှင့်ပြုချက်အမှတ် ၁၁၅၉/၂၀၀၁ (၁၁)

> မျက်နှာဖုံးကွန်ပျူတာ ပုံရိပ်

မျက်နှာဖုံးခွင့်ပြုချက်အမှတ် ၁၀၉၅/၂၀၀၁ (၁၂)

အတွင်းကွန်ပျူတာစာစီ ပုံရိပ်

ထုတ်ဝေသူ ဦးထွန်းလှိုင် (ချစ်စရာစာပေ)-ဝ၅၄၆ အမှတ်-၇၅၊ ဝေပုလ္လ (၂)လမ်း၊ (ယ)ရဝ်ကွက်၊ မြောက်ဥက္ကလာပမြို့နယ်၊ ရန်ကုန်မြို့။

ပုံနှိပ်သူ ဦးဝင်းမြိုင် (ဝ၂၄၈၆) * သိဒ္ဓိမြိုင်ပုံနှိပ်တိုက် အမှတ်-၁၁၄၊ ၃၄ လမ်း၊ ရန်ကုန်မြို့။

"ရေနွေးကြမ်းဝိုင်း"

သာယာလှပတဲ့ ညတစ်ညရဲ့ ရှစ်နာရီခွဲ။

သင်တန်းဆင်းသွားပြီဖြစ်တဲ့ တပည့်သားချင်းလေးငါးယောက် စာရေးသူထံကန်တော့ကြရန် စားဖွယ် သောက်ဖွယ်လေးများနဲ့ ရောက်လာကြပါတယ်။ နယ်မှ ကျောင်းဆင်းသင်တန်းသားတွေဖြစ်လို့ သူတို့လေးတွေ တစ်ရက် နှစ်ရက်ကြာ ကိုယ့်ဇာတိမြို့ရွာသို့ ပြန်ကြတော့မယ်။ ကိုယ့်ရဲ့တပည့်သားချင်းတွေကို ရေနွေးကြမ်းပူပူနွေးနွေး ချပေးရင်း စကားစမြည်ပြောကြ၊ ဆိုကြ၊ စားကြ၊ သောက်ကြ။

ရေနွေးကြမ်းဝိုင်းလေးဟာ ပျော်ရွှင်စရာကောင်းတဲ့ကမ္ဘာလေးတစ်ခု ဖြစ်လာပါတော့တယ်။ ပြောကြ၊ ဆိုကြ ပြန်တော့လည်း လျှပ်စစ်အကြောင်း၊ အီလက်ထရွန်းနစ်အကြောင်း။

သူတို့လေးတွေယူလာတဲ့ စာအုပ်တွေထဲက လက်တွေ့လုပ်ချင်တာလေးတွေ၊ မသိမရှင်းတာလေးတွေ၊ မေးကြ၊ မြန်းကြပေါ့။ ယူခဲ့တဲ့စာအုပ်တွေနဲ့ ဆားကစ်ပုံတွေကတော့ ဦးမောင်မောင်မြတ်စာအုပ်၊ နေလင်း အီလက် ထရွန်းနစ်မှ ထုတ်ဝေခဲ့တဲ့စာအုပ်၊ ဦးထိန်ဝင်း၊ ဦးဝင်းထက်ဝင်း၊ ဦးမောင်မောင်တင်စတဲ့ ရန်ကုန်မြို့မှာ ထင်ရှားတဲ့ အီလက်ထရွန်းနစ် ဆရာတွေရဲ့ စာအုပ်တွေ၊ စာပေတွေပါပဲ။

သူတို့လေးတွေ မေးကြ၊ မြန်းကြ၊ လက်တွေ့လုပ်ချင်ကြတာတွေက အဓိကပါဝါဆပ်ပလိုင်းပတ်လမ်းတွေပဲ ဖြစ်တယ်။ ပရောဂျက်ခုံ (Project Board)မှာ အတော်များများ ဆားကစ်လေးတွေ တည်ဆောက်စမ်းသပ် ဖြစ်ခဲ့ကြတယ်။ တချို့ကလည်း လှိုင်းဝက်နဲ့ လှိုင်းပြည့်ထရန်စဖော်မာပတ်ကြတယ်။ အထွက်ဗို့ကို တိုင်းကြတယ်၊ ဆွေးနွေးကြတယ်၊ တိုင်ပင်ကြတယ်။

နာရီပြန်နှစ်ချက်ခွဲရှိနေပြီ လူငယ်လေးတွေပီပီ အာရုံစူးစိုက်ပြီး ဆားကစ်တွေ တည်ဆောက်နေကြတယ်။ အီလက်ထရွန်းနစ်ဆားကစ်ပတ်လမ်းတွေဟာ တကယ်တမ်းတည်ဆောက်စမ်းသပ်ကြတဲ့အခါ ထမင်းမေ့ ဟင်းမေ့ ဖြစ်ခဲ့ဖူးကြပါတယ်။

စာရေးသူကိုယ်တိုင် ဒီဂျစ်တယ်အီလက်ထရွန်းနစ်သင်ရိုးကို ဆရာဦးမောင်မောင်မြတ် (အီလက်ထရွန်းနစ် ဂုဏ်ထူး)ထံ ကိုးလတာမျှ သင်တန်းတက်ခဲ့စဉ်ကလည်း ဒီဂျစ်တယ်အိုင်စီနာရီဆားကစ်တွေ တည်ဆောက်ခဲ့ကြတယ်။ ဆားကစ်တစ်ခုကို မပြီးပြီးအောင်ဇွဲနဲ့ လုပ်ခဲ့ဖူးပါတယ်။ နာရီကောင်တာအလုပ် လုပ်မှပဲ စိတ်အေးတော့တယ်။ ယခု လူငယ်လေးတွေဆိုတော့ အိပ်ငိုက်ရမှန်းမသိ၊ ညောင်းရမှန်းမသိ ဆားကစ်တစ်ခုပြီးတစ်ခု။

နံနက်အာရုဏ်ကျင်းပါပြီ အေစီမှ ဒီစီဆားကစ်ပုံများလည်း စုံစုံလင်လင် ပြည့်စုံသလောက်ပါပဲ။ ကလေးတွေရဲ့ အားကျိုးမာန်တက်ပြုလုပ်နေတာကြည့်ပြီး စာရေးသူမအိပ်ချင်၊ အိပ်ချင်စိတ်လဲမရှိ၊ သူတို့လေးတွေရဲ့ ဝမ်းစာအဖြစ် ဖန်တီးပေးရမယ့် ပညာရပ်တွေဖြစ်နေလေတော့ ဝမ်းသာပီတိ ကျေနပ်မှုအပြည့်အဝ။

တစ်ညတာရဲ့ရေနွေးကြမ်းဝိုင်းမှ ဖြစ်ပေါ် လာတဲ့ အေစီမှ ဒီစီပြောင်းပုံလေးတွေကို မမြင်လိုက်ရ၊ မသိလိုက်ရ၊ မကြားလိုက်ရတဲ့ တခြားသောတပည့်သားချင်းတွေလဲ သိခြင်မှာပါ၊ လိုခြင်မှာပါ၊ တစ်ညတာရဲ့အတွေ့အကြံ၊ တည်ဆောက် ရှင်းပြခဲ့ရတဲ့ အေစီမှ ဒီစီပြောင်းရတဲ့ ဆားကစ်ပတ်လမ်းတွေကို စာတစ်စောင် ပေတဖွဲ့ပြုစုပြီး-ဖော်ပြလိုက်ရရင် ။

> ဦးအုန်းမြိုင် (လျှပ်စစ်) (၁. ၁. ၂၀၀၁)

មាលំយា

စဉ်	အကြောင်းအရာ	စာမျက်နှာ
01	အေစီလျှပ်စစ်နဲ့ ဒီစီလျှပ်စစ်အကြောင်း သိထားရမယ်	0
	ပါဝါဆပ်ပလိုင်းဆိုတာက	
Jn	ဖီလ်တာဆားကစ်ဆိုတာဘာလဲ	J
2"	ထရန်စဖော်မာအကြောင်းသိပြီးပြီလား	9
9 "	ထရန်စဖော်မာကို ခွဲခြားထားပုံ	9
ງ"	ပုစ္ဆာတွက်ရင် သတိပြုရမှာက	Ĵ
Gu	လိုအပ်တဲ့ ဗို့အားကိုဘယ်လိုပတ်ရမှာလဲ	હ
S.	အီအိုင်ကိုးပြားအရွယ်အစား သိထားရဦးမယ်	n
ຄາ	SWG ဝါယာဂိတ်နှင့် အင်ပီယာဆက်သွယ်သောဇယား	9C
G။	လှို်းပြည့် ကြိုးတစ်ပင်တည်းပတ်နေပုံ	29
	လှိုင်းပြည့် ကြိုးနှစ်ပင်ပူးတွဲပတ်နေပုံ	
JOI	လှိုင်းဝက်နှင့် လှိုင်းပြည့် ဘယ်နည်းနဲ့ပတ်ကြမှာလဲ	၁၅
001	လှိုင်းပြည့်ကြိုးတစ်ပင်ထဲပတ်နည်းနဲ့ လှိုင်းပြည့်ကြိုးနှစ်ပင် ပူးတွဲပတ်နည်း	၁၆
	(၁) လှိုင်းပြည့် ကြိုးတစ်ပင်ထဲပတ်မယ်ဆိုရင်	
	(၂) လှိုင်းပြည့် ကြိုးနှစ်ပင်ပူးတွဲပတ်မယ်ဆိုရင်	
ာ၂။	ဒိုင်အုပ်ဆွေမျိုးများနဲ့ မိတ်ဆက်ပေးပါမယ်	၁၇
ာ၃။	l Amp နဲ့ 3 Amp စီလီကွန်ဒိုင်အုပ်များရဲ့ ဗိုခံနိုင်ရည်ဇယား	JJ
091	လှိုင်းစင်မပါ ဒီစီပတ်လမ်း	J5
	ဒီစီ ကွန်ဒင်ဆာ ဆိုတာက	
ວໆ။	ဒီစီ ကွန်ဒင်ဆာရဲ့ ဆွေမျိုးများ	J9
	ီစီ ကွန်ဒင်ဆာရဲ့ နံပါတ်တွေကို လေ့လာကြည့်ရင်	
ວຣາ	ကက်ပက်စီတာ ဖီလ်တာဆားကစ် (၁)	JJ
၁၇။	ကက်ပက်စီတာ ဖီလ်တာဆားကစ် (၂)	յնա
ວດແ	ကက်ပက်စီတာ ဖီလ်တာဆားကစ် (၃)	JS
၁၉။	ကြိုးဂိတ်ကိုကြည့်၍ ဖီလ်တာကွန်ဒင်ဆာကို ရွေးချယ်တယ်	၂၈

စဉ်	အကြောင်းအရာ	စာမျက်နှာ
၂၀။	လှိုင်းပြည့် ဒိုင်အုပ်များ	JC
	မျက်နှာငယ်ရတဲ့ ဒီစီပတ်လမ်း	
၂၁။	ဗို့အားထိန်း ပတ်လမ်းများ Voltage Regulator Circuits	90
	(က) ဇီနာ၊ ဒီစီဗို့အားထိန်းပတ်လမ်း ပုံ(က)	
JJ"	(ခ) ထရန်စစ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်း ပုံ(ခ)	၃၁
	(ဂ) ရီစစ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်း ပုံ(ဂ) •	
J9"	(က) ဇီနာ၊ ဒီစီဗို့အားထိန်းပတ်လမ်းပစ္စည်းပုံ၊ ပုံ(က)	5 L
J9"	(ခ) ထရန်စစ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်းပစ္စည်းပုံ၊ ပုံ(ခ)	99
	(ဂ) ရီစစ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်းပစ္စည်းပုံ၊ ပုံ(ဂ)	
JJ.	l Amp အတွင်း အသုံးပြုနိုင်သည့် အထွက်ဒီစီဗို့အားထိန်းပတ်လမ်း	29
၂၆။	l Amp အတွင်း အသုံးပြုနိုင်သည့် အထွက်ဒီစီဗို့အားထိန်းပတ်လမ်း ပစ္စည်းပုံ	C9
JS"	ငုတ် သုံးငုတ်ရှိ အိုင်စီဗို့အားထိန်းပတ်လမ်း	ନ୍ତ
	ငုတ် သုံးငုတ်ရှိ အိုင်စီကို နှစ်မျိုးခွဲခြားထားပါတယ်	
၂၈။	(က) စီလီကွန်ဒိုင်အုပ်ကို စီးရီးအသုံးပြုမယ်ဆိုရင်	55
Je	(ခ) ဇီနာဒိုင်အုပ်ကို အသုံးပြုမယ်ဆိုရင်	20
	(ဂ) ရီစစ္စတာကို အသုံးပြုမယ်ဆိုရင်	
óo.	IC 7805. Comm တိုက်ရိုက် Ground ချ ဆားကစ်ပတ်လမ်း	96
109	IC 7805. Comm တိုက်ရိုက် Ground ချ ပစ္စည်းပတ်လမ်းပုံ	90
۳.6	IC 7805. Comm ဒိုင်အုပ်သုံးပြီး Ground ချ ဆားကစ်ပတ်လမ်း	90
	IC 7805. Comm ရီစစ္စတာသုံးပြီး Ground ချ ဆားကစ်ပတ်လမ်း	
	IC 7812. သုံး 12V DC ထုတ် ဆားကစ်ပတ်လမ်း	
199"	Comm မှာ ဒိုင်အုပ်သုံးပြီး Ground ချ ဆားကစ်ပတ်လမ်းပစ္စည်းပုံ	9J
	Comm မှာ ရီစစ္စတာသုံးပြီး Ground ချ ဆားကစ်ပတ်လမ်းပစ္စည်းပုံ	
262	12 V DC ထုတ် ဆားကစ်ပတ်လမ်း ပစ္စည်းပုံ	92
20"	ပံ့သေ အနုတ်ဗို့အားထိန်းပတ်လမ်း	۶۶ ["]
	ခွိပါငါဆပ်ပလိုင်းဗို့အား ထိန်းပတ်လမ်းများ -	CO !!
26"	ာ V နှင့် + 9 V ထုတ် ဆားကစ်ပတ်လမ်းပစ္စည်းပုံ	6 3 "

http://www.khtnetpc.webs.com For Knowledge & Educational Purposes

စဉ်	အကြောင်းအရာ	စာမျက်နှာ
20 20	IC 7812 နှင့် IC 7912 သုံး + 12 V DC နှင့် –12 V DC ထုတ် ဆားကစ်ပတ်လမ်း	9 6
	IC 7815 နှင့် IC 7915 သုံး + 15 V DC နှင့်–15 V DC ထုတ် ဆားကစ်ပတ်လမ်း	
1:11	+ 15 V DC နှင့် - 15 V DC ထုတ် ဆားကစ် ပစ္စည်းပတ်လမ်းပုံ	92
.Sn	ချိန်ညီဗိုအားထိန်းပတ်လမ်း	90
;on	INI 317 နဲ့ ပုံသေ ဒီစီထုတ်ယူမယ်	ეი
	LM 31 ဆုံး 6 V DC . 9 V DCနှင့် 12 V DC ထုတ် ဆားကစ်ပတ်လမ်း	
	ခိုန်ညိုင့်အားထိန်းပတ်လမ်း ပစ္စည်းပ	ງວ
	6 V DC 9 V DC နှင့် 12 V DC ထုတ် ပစ္စည်းပတ်လမ်းပုံများ	
ال:	LM 317 ဆားကစ်ပတ်လမ်းများ (၁)	วเ
-	LM 317 ဆားကစ်ပတ်လမ်းများ (၂)	
ц е н	LM 317 ဆားကစ်ပတ်လမ်း (၁) ၏ပစ္စည်းပုံ	9C
,	LM 317 ဆားကစ်ပတ်လမ်း (၂) ၏ပစ္စည်းပုံ	
C Q H	မြန်ကြားစာ	39
90.	ကွန်ဗာတာဆားကစ်ပတ်လမ်းများ	69
	ဒီစီ မှ ဒီစီသို့	
961	အဝင် 12 V DC မှ အထွက် 24 V DCထုတ် ဆားကစ်ပတ်လမ်း (၁)	હિંદ
	အဝင် 12 V DC မှ အထွက် 24 V DC ထုတ် ဆားကစ်ပတ်လမ်း (၂)	
92º	အဝင် 6 V to 18 V DC အတွင်းမှ အထွက် 7 V5 to 35 V DC ထုတ်	ເງ
	ဆားကစ်ပတ်လမ်း	
	+9 V DC ပေးသွင်း၍ -9 V DC ထုတ်ပေးနိုင်သော ဒွိပါဝါဆပ်လိုင်း	
50 1	အဝင် 6 V DCမှ အထွက် + 12 V DC ထုတ် ဆားကစ်ပတ်လမ်း	Gg
9e"	(+12.5V to + 30 V DC) ပေးသွင်း၍ (+ 12 V DC) ပုံသေ ထုတ်ပေးသော	60
10	ဆားကစ်ပတ်လမ်း	
၅၀။	ဓာတ်ခဲ (1.5 V)လေးလုံး အားသွင်းနိုင်သော ဆားကစ်(က)	ඉම
	3 V DC နှင့် 6 V DC ထုတ်နိုင်ပြီး ဓာတ်ခဲ 1.5 V နှစ်လုံး အားသွင်းနိုင်သော	
	ဆားကစ် (ခ)	
12.0	"လှိုင်းဝက်" ပတ်ပြီး ပုံသေဇယားကွက်။	So
Jo1	သင်္ကေတပုံများ၏ အဓိပ္ပာယ်ဖွင့်ဆိုချက်	and the second second

С

ဦးအုန်းမြိုင်(လျှပ်စစ်)

စအခ်ိဳ မှ စီခ်ီသို့

စတစီ လျှပ်စစ်နဲ့၊ စီစီလျှပ်စစ် အကြောင်း သိထားရမယ်။

အဲမ်မှာသုံးနေတဲ့ လျှပ်စစ်က အေစီ လျှပ်စစ် ဖြစ်တယ်။ အင်္ဂလိပ်လို Alternating Current အော်တာနေတင်း ကားရင့်လို့ခေါ် တယ်။ ဝါယာကြိုးတစ်ဖက်မှာ လျှပ်စစ်အဖိုနဲ့ လျှပ်စစ်အမ တစ်စက္ကန့်အချိန်အတွင်းမှာ အကြိမ် ၅၀ နှုန်းနဲ့ အပြန်အလှန် ပြောင်းလဲနေတယ်။ ဖရိတွင်စီ Frequency လို့လဲခေါ် တယ်။ လှိုင်းပုံသင်္ကေတနဲ့ ဖော်ပြတယ်။ ကြိမ်နှုန်းတိုင်း မီတာကိုဟပ် (Hz) Hertz လို့ခေါ် တယ်။ အိမ်သုံးလျှပ်စစ်ကို ဗို့အား 220 Volt နဲ့ ဖြန့်ဖြူးပါတယ်။ ဝါယာကြိုးတစ်ဖက်မှာ အဖို သီးခြား၊ အမသီးခြား မရှိဘူး။

ဓာတ်ခဲ၊ ဘက်ထရီအိုးတွေက ရရှိတဲ့ လျှပ်စစ်ကို ဒီစီ Direct Current လို့ခေါ် တယ်။ တိုက်ရိုက်လျှပ်စီးကြောင်း ဖြစ်တယ်။ လျှပ်စစ်အဖိုနဲ့ လျှပ်စစ်အမသီးခြားစီရှိတယ်။ မျဉ်းဖြောင့်ပုံသဏ္ဌာန်နဲ့ အဓိပ္ပာယ် ဖော်ပြတယ်။

ရေဒီယို၊ ကက်ဆက်၊ တီဗီကြည့်ရန် ပလပ်**ကြီးကို အေစီဆော့ကက်မှာ သုံးရပေမယ့် အေစီမှ ဒီစီပြောင်းပြီး သုံးရတယ်** ဆိုတာ သိထားရမယ်။ ဘာဖြစ်လို့လ<mark>ည်းဆိုတော့ အီလက်ထရွန်းနစ် ဆားကစ်ပတ်လမ်းတွေဟာ ဒီစီလျှပ်စစ်နဲ့ သုံးလို့</mark>ပဲ ဖြစ်တယ်။

ပါဝါဆပ်ပလိုင်း POWER SUPPLY ဆိုတာက

ပါဝါဆပ်ပလိုင်းရဲ့ ဖွဲ့စည်းထားပုံလို လေ့လာကြည့်ရအောင်။ ဗို့အားနိမ့်ထရန်စဖော်မာတစ်လုံးကို အေစီ ၂၂၀ ဗို့ ပေးသွင်းပြီး၊ တစ်ဖက်မှထွက်လာတဲ့ ဗို့အားနိမ့် အေစီကို (ဥပမာ၊ 6 V AC, 9V AC, 12V AC) ရက်တီဖိုင်ယာပတ်လမ်း (Retifier Circuit) နဲ့ ဆက်သွယ်ပေးတယ်။ အဲဒီလို အေစီမှ ဒီစီ ပြောင်းလဲပေးတာကို၊ Rectification ပြုလုပ်ပေးတယ်လို့ ခေါ်တယ်။ တစ်ခါ သန့်စင်တဲ့ ဒီစီဖြစ်အောင်၊ ဖီလ်တာအပိုင်း Filter ကို ပေးသွင်းရတာ တွေ့ရမှာ ဖြစ်တယ်။

အဆင့်ဆင့်ကြည့်မယ်ဆိုရင် A.C INPUT (အေစီ အဝင်) ျ

STEP DOWN TRANSFORMER (ဗို့ဘားနိမ့်ထရန်စဖော်မာ)

 \downarrow

RECTIFIER CIRCUIT (ရက်တီဖိုင်ယာ ဆားကစ်)

¥

FILTER CIRCUIT (ဖိလ်တာ ဆားကစ်)

အေစီ၊ လျှပ်စစ်ကို Bi Directional Current နှစ်ဖက်စီး လျှပ်စစ်လို့ ခေါ်ကြသလို၊ ဒီစီလျှပ်စစ်ကိုလဲ Unindirectional Current တစ်ဖက်စီး လျှပ်စစ်လို့လဲ ခေါ်ကြတယ်။

အေစီလျှပ်စစ်အား အဝင်ဗို့ပြောင်းလဲနေရလို့၊ ဒီစီလျှပ်စစ်လဲ လိုက်ပြီးပြောင်းလဲနေမှာ ဖြစ်ပါတယ်။ ဒါကြောင့် ဒီစီပုံသေ ဗိုနဲ့ ပုံသေလျှပ်စစ် D.C Constant ဖြစ်ရန် လိုအပ်တယ်။ J

စီစီမှ စီစီသို့ ဦးတုန်းမြိုင်(လျှပ်စစ်)

ရက်တီဖိုင်ယာ အပိုင်းဟာ အေစီမှ ဒီစီ ပြောင်းလဲပေးလိုက်ပေမယ့် ဒီစိ စစ်စစ်မရသေးဘူး။ ဒီစီသန့်သန့် မဖြစ်သေး ဘူး။ ထွက်လာတဲ့ဒီစီဟာ Negative (နက်ဂ်တစ်)အပိုင်း မပေါ် လို့၊ လှိုင်းပြတ်ပုံဒီစီ (Pul-Sating) ပါလ်စေတင်း ဒီစီလို့ခေါ်ကြ တယ်။ သူ့ရဲ့ပမာဏဟာ အချိန်နဲ့လိုက်ပြီး ပြောင်းလဲနေလို့ အေစီရဲ့ ဂုဏ်သတ္တိရှိနေသေးတယ်။ အေစီ နည်းနည်းကျန်နေသေး တယ်။

အီလက်ထရွန်းနစ် ဆားကစ်တွေမှာ သန့်စင်တဲ့ ဒီစီရမှသာ အသုံးပြုနိုင်မှာ ဖြစ်တယ်။ သန့်စင်တဲ့ ဒီစီဆိုတာက ဓာတ်ခဲ၊ ဘက်ထရီတို့က ရရှိတဲ့ ဒီစီမျိုး လိုချင်တယ်။

ရက်တီဖိုင်ယာအပိုင်းမှာ ဒိုင်အုပ် (Diode) ဟာ အဓိကသော့ချက် ဖြစ်တယ်။ ဒိုင်အုပ်က ဖြတ်သန်းလာတဲ့ Pulsating D.C (ပါလ်စေးတင်း ဒီစီ)ကို Filter Circuit (ဖီလ်တာဆားကစ်)မှာ ဖြတ်သန်းစေမှသာ အေစီ အစိတ်အပိုင်းကို စစ်ထုတ်ပေးမှာ ဖြစ်ပါတယ်။

အေစီ မှ ဒီစီသို့ ပြောင်းလဲတဲ့အခါမှာ ရက်တီဖိုင်ယာအပိုင်းကို လေ့လာကြည့်ရင် -

(၁) လှိုင်းဝက်ရက်တီဖိုင်ယာ Half-Wave Rectifier

(၂) လှိုင်းပြည့်ရက်တီဖိုင်ယာ Full-Wave Rectifier နှစ်မျိုးခွဲခြားထားတာ တွေ့ရပါတယ်။

ဖော်ပြပါ နှစ်မျိုးမှ လှိုင်းပြည့်ကို နှစ်မျိုးထပ်မံပြီး ခွဲခြားထားပြန်တယ်။

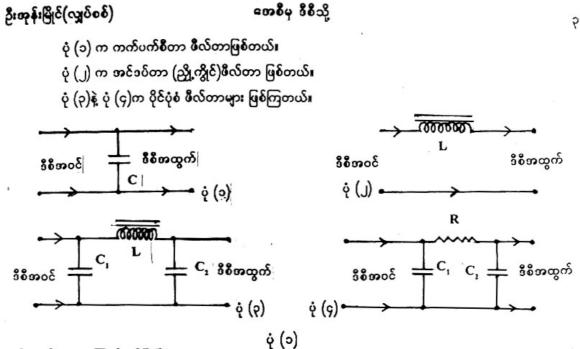
(က) ဗဟိုစ ပါဝင်တွဲ လှိုင်းပြည့် ရက်တီဖိုင်ယာ Center Tapped Full Wave Rectifier

(ခ) (ဘရစ်ခ်ျ) လှိုင်းပြည့်ရက်တီဖိုင်ယာ Bridge Full Wave Rectifier တို့ဖြစ်ကြတယ်။

ပါဝါဆပ်ပလိုင်း တည်ဆောက်တဲ့အခါ

- (က) လီနီယာတိုက် Linear Type
- (ခ) ဆွိချင်တိုက် Switching Type နှစ်မျိုးရှိတယ်။

လီနီယာတိုက်မှာ ထရန်စစ္စတာ ပါဝါဆုံးရှုံးမှုရှိတဲ့အတွက် Dissipative Type လို့ သတ်မှတ်ထားသလို ဆွိချင်တိုက်မှာ ပါဝါဆုံးရှုံးမှု မရှိတဲ့အတွက် Non-disipative Type လို့ သတ်မှတ်ထားပါတယ်။


ဖိလ်တာဆားကစ် Filter Circuit ဆိုတာဘာလဲ၊

သော<mark>က်ရေသန့်သန့်သောက်ချင်လို့ ရေစစ်နဲ့ စ</mark>စ်ရမယ် မဟုတ်လား။ လျှပ်စစ်မှာလဲ အေစီလျှပ်စစ်မှ ဒီစီလျှပ်စစ် သန့်သန့်ဖြစ်အောင် **လှိုင်းစစ် ဆားကစ်နဲ့စစ်ပေးရတယ်။ စစ်တဲ့နည်းက သုံးမျိုးရှိတ**ယ်။

- (၁) ကွန်ဒင်ဆာခေါ် ကက်ပက်စိတာနဲ့ စစ်မယ်။ Capacitor Filter
- (၂) အင်ဒပ်တာ (ညို့ကျိုင်)နဲ့ စစ်မယ်။ Inductor Filter
- (၃) ပိုင်ပုံစံနဲ့စစ်မယ် π Section Filter တို့ဖြစ်တယ်။

ဖီလ်တာ ဆားကစ်သုံးမျိုးရှိပေမယ့် <mark>အဓိကနှစ်မျိုးကိုပဲ အသုံးများပါ</mark>တယ်။ ကက်ပက်စီတာကို အသုံးပြုတယ်ဆိုရင် ဒီစီကို ဖြတ်သန်းခွင့်မပြုဘဲ၊ အေစီကိုသာ ဖြတ်သန်းခွင့်ပြုတဲ့နည်း ဖြစ်တယ်။

အင်ဒပ်တာခေါ် ညို့ကွိုင်ကို သုံးမယ်ဆိုရင် ဒီစီကို ဖြတ်သန်းခွင့်ပြုပြီး၊ အေစီကို ပိတ်ဆို့ထားနိုင်တဲ့ သတ္တိရှိတယ်။ ဖီလ်တာ ဆားကစ်ပုံတွေကို လေ့လာကြည့်ရအောင်။

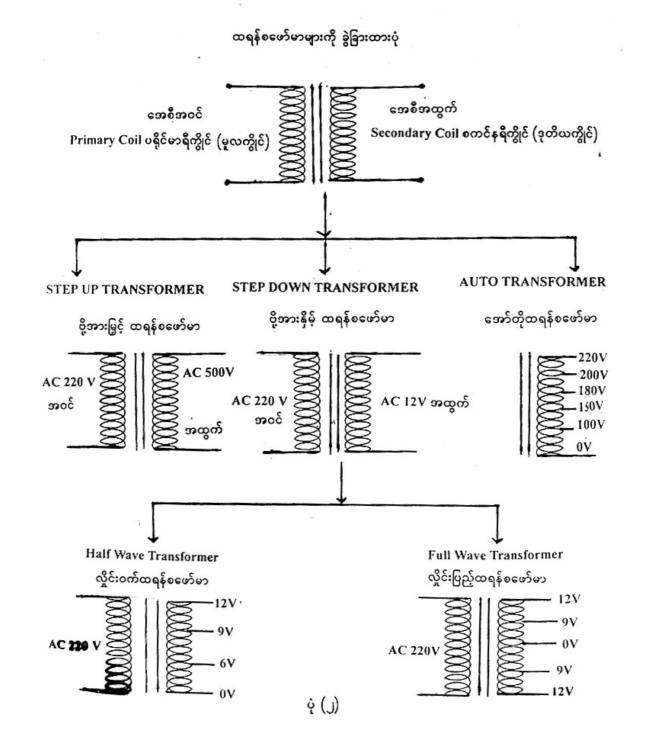
ထရန်စဖော်မာ အကြောင်း သိပြီးပြီလား၊

ထရန်စဖော်မာကို လေ့လာကြည့်ရင် Iron Core အိုင်းရင်းကိုးလို့ခေါ် တဲ့ သံပြားပျော့အူတိုင် အမျိုးအစား သံပြားများ ပေါ်မှာ စနစ်တကျ ဝါယာနန်းခွေများ ရစ်ပတ်ထားတာ တွေ့ရမယ်။

သံအူတိုင်ကို အခြေခံထားပြီး Former ဖော်မာ ပြုလုပ်ပေးရတယ်။ ဖော်မာပေါ်မှာ မူလကွိုင် Primary Coil ပရိုင်မာရီကွိုင်ကို အေစီအဝင်အဖြစ် ပထမဆုံး ပတ်ပေးရတယ်။ မူလကွိုင်ပတ်ပြီးရင်၊ အပေါ်မှထပ်ပြီး၊ ဒုတိယကွိုင် Secondary Coil ကို ပတ်ပေးရတယ်။

ထရန်စဖော်မာတွေကို ပုံပါအတိုင်း ခွဲခြားထားတာ တွေ့ရမယ်။

- (၁) ဗို့အားမြှင့်ထရန်စဖော်မာ Step-Up Transformer
- (၂) ဗို့အားနိမ့်ထရန်စဖော်မာ Step-Down Transformer


(၃) အော်တို ထရန်စဖော်မာ Auto Transformer တို့ဖြစ်ကြတယ်။

ဗို့အားနိမ့်ထရန်စဖော်မာမှာ (က) လှိုင်းဝက်၊ ထရန်စဖော်မာ (Half Wave) နဲ့ (ခ) လှိုင်းပြည့်ထရန်စဖော်မာ Full Wave) ဆိုပြီး ခွဲခြားထားပြန်တယ်။

အသုံးများဆုံး ထရန်စဖော်မာ ကိုးပြားတွေက၊ အီအိုင်ပုံ (E.I) သံပြားများ ဖြစ်တယ်။ သံလိုက်စက်ကွင်း အင်အား ကောင်းရန် အရေးကြီးပါတယ်။ 9

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့

ပုစ္ဆာတွက်ရင် သတိပြုရမှာက

သင်္ချာပိုင်းဆိုင်ရာတွေကို တွ<mark>က်ချက်ရင်၊ ကိုးပြားဧရိယာကို စံပြုပြီး တွက်ရမှာ ဖြစ်တယ်။ အီးအိုင်ကိုးပြားများရဲ့</mark> အလယ်အူတိုင် ဧရိယာက

ဧရိယာ · x လက်မ x y လက်မ

ဧရိယာက ပါဝါနဲ့ ဆက်သွယ်နေပါ**တ**ယ်။

 $A = \frac{\sqrt{P}}{5.58}$

ဧရိယာဟာ ပတ်ရည်နဲ့လဲ ဆက်သွယ်မှု ရှိတယ်။

N = _____ (N + တဗို့ရှိ ပတ်ရည်)

ပုစ္ဆာတွက်ရင် အသုံးပြုရမဲ့ ပုံသေများက

(0)	စုတိယနန်းခွေရဲ့ ဗို့အား	S,	=	V _{pc} x 0.75	
(J)	ဒုတိယနန်းခွေရဲ့ လျှပ်စီး	s,		I _{DC} x 1.3	
(२)	၃တိယနန်းခွေရဲ့ ပါဝါ	S _p		S, x S	
(9)	မူလနန်းခွေရဲ့ ပါဝါ	P,	=	S, x 1.2	
()	မူလနန်းခွေရဲ့ လျှပ်စီး	P,		230 V	
(6)	သံအူတိုင်၏ ထောင့်ဖြတ်ဧရိယာ	А,	-	VP, 5.58	
(2)	လက်တွေ့ အသုံးပြု ပဲ့ ဧရိယာ	A,	-	1.1 x A,	
(n)	တစ်ဗို့ရှိ အပတ်ရေ	N			
(e)	မူလက္ဂိုင်ရဲ့ အပတ်ပေါင်း		-	230 V x T/V	
(00)	စုတိယက္လိုင်ရဲ့ အပတ်ပေါင်း		**	1.03 x V _{DC} x T/V	

အေစီ မှ ဒီစီ ပြောင်းနိုင်ရေးအတွက် ငို့အားနိမ့် ထရန်စဖော်မာကို အသုံးပြုရမှာ ဖြစ်တယ်။ မိန်းထရန်စဖော်မာလို့ ခေါ် တယ်။ အသုံးပြုရမယ့် ပစ္စည်းအပေါ် မှာ မူတည်ပြီး၊ လှိုင်းဝက်ပတ်နည်းနဲ့ လှိုင်းပြည့်ပတ်နည်း၊ ဘယ်နည်းကို အသုံးပြုရမယ်ကို စဉ်းစားရမှာ ဖြစ်တယ်။

C

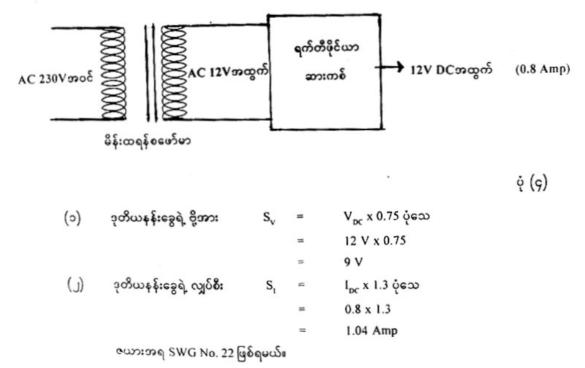
G

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

လိုအပ်တဲ့ ဗို့အားကို ဘယ်လိုပတ်ရမှာလဲ။

သင်္ချာသဘောစဉ်းစားကြည့်ကြရအောင်။


တီဗီဂိန်း (T.V Game) ကစားရန်အတွက် 12 VDC နဲ့ လျှပ်စစ်စီးကြောင်း 800 MA (Milli Ampere) မီလီ အင်ပီယာ လိုအပ်ပါတယ်။ အခ ပ်တာ (adaptor) တစ်လုံး တည်ဆောက်ပေးရမယ်။

ဈေးကွက်မှာ အေစီ မှ ဒီစီပြောင်းတဲ့ပစ္စည်းကို အဒပ်တာ (adaptor) လို့ ခေါ်ကြတယ်။ "ပြောင်းလဲပေးတဲ့အရာ"လို့ အဓိပ္ပါယ်သက်ရောက်ပါတယ်။ အဒ ပ်တာထဲမှာ ရက်တီဖိုင်ယာ ဆားကစ် တည်ဆောက်ထားပါတယ်။

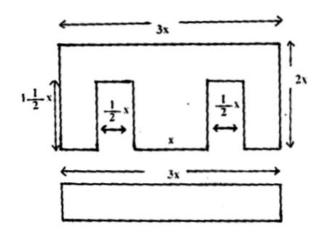
အဝင်ဗို့အား	=	230 V A.C
အထွက်လိုအပ်တဲ့ ဗို့အား	=	12 V D.C
အထွက်လိုအပ်တဲ့ လျှပ်စစ်စီးကြောင်း	=	800 MA (0.8 Amp)
1000 MA	=	1 AMP
800 MA	=	$\frac{1 \times 800}{1000} = 0.8 \text{ MA}$

ပုံကြမ်းဆွဲကြည့်မယ်ဆိုရင်

ပုံအရ၊ ပထမဦးဆုံး မိန်းထရန်စဖော်မာ တစ်လုံးပတ်ရမယ်။ အဝင်က 230 V A.C ဖြစ်ရမယ်။ အထွက်က 12 V A.C ဖြစ်ရမှာမို့ ငို့အားနိမ့် ထရန်စဖော်မာတစ်လုံး ဖြစ်ရမယ်။ အချက်အလက်တွေကို အခြေခံပြီး ပုစ္ဆာသဘော တွက်ကြည့်ရ မယ်။

ဦးအုန်းမြိုင်(လျှပ်စ	۵۵)	အေစီမှ	ဒီစီသို့		2
(२)	ဒုတိယနန်းခွေရဲ့ ပါဝါ	S,	=	S _v x S _i	
			=	9 V x 1.04	
			=	9.36 Watt (10W)	
(a)	မူလနန်းခွေရဲ့ ပါဝါ	Pp	=	S, x 1.2 ບໍ່သေ	
(9)	acoss. 001	* P		8 °	
			= .	10 x 1.2	
			=	12 Watt	
(ე)	မူလနန်းခွေရဲ့ လျှပ်စီးကြောင်း	P _I	=	P _P 230 V	
			=	230	
			=	0.052 Amp	,
	ဇယားအရ SWG No. 38 ဖြ	စ်ရမယ်။			
(6)	သံအူတိုင်၏ ထောင့်ဖြတ်ဧရိပ		=	√ P _p 5.58	
				√12	
			=	5.58	
			=	0.62 Sq inches	
(2)	လက်တွေ့အသုံးပြုရမဲ့ဧရိယာ	Α	=	1.1 x 0.62 Sq inches	
			=	0.687 Sq inches	
			=	0.7 Sq inches	
	အကယ်၍ x = 0.7" ထားမပ	်ဆိုရင်၊	y=1" ဖြစ်	ပ်ရမယ်။	
(၈)	 တစ်ဗို့ရှိ အပတ်ရေ		N	$= \frac{8}{A}$ (Turns / Volt)	
			N :	$= \frac{8}{0.62}$ ("iurns / Volt)	*
				= 12.9 T/V	
				= 13 Turns/Volt	
	တစ်ဗို့ကို (13) ပတ်၊ ပတ်ပေး	ရမယ်။			
(e)	မူလအဝင်ကွိုင်ရဲ့ အပတ်ပေါ	£:	N _p =	= 230 V x 13 T/V	
			-	= 2990 Turns	
			-	= 3000 Turns	
(00)	ဒုတိယနန်းခွေရဲ့ အပတ်ပေါင်	:	N, ÷	= 1.03 x 12 V x 13 T/V	
			è	= 160 Turns	
	a de la companya de la				

		ဒီစီမှ ဒီ	စီသို့		ဦးအုန်းမြိုင်(လျှပ်စစ်)
(၁၁)	ဒုတိယနန်းခွေရဲ့ အပတ်ပေ	:36	N,	=	1.03 x 9 V x 13 T/V
				-	120.51 Turns
				=	120 Turns
0	စုတ်လို့ ရတာက င် အေစီအဝင်ကို ဂိတ်နံပါတ်	(SWG No	38)	30	00 Turn ເເດືອຍເນົ້າ
					နဲ့ 160 Turns ပတ်ပေးရမယ်။
ပုစ္ဆာမှာ	ပါတဲ့ သင်္ကေတတွေက				
(0)	Sv = Secondary Volt	(9)	S _P =	Se	condary Power
(L)	V _{bc} = DC Volt	(c)	P, *	Pri	imary Power

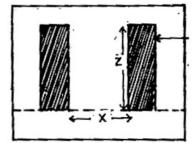

အီအိုင် ကိုးပြားနဲ့ အရွယ်အစား သိထားရအုံးမယ်။

S = Secondary Amp

(၃)

အလယ်အူတိုင် အကျယ် 0.7" လက်မနဲ့ အထူ ၊ လက်မရှိတဲ့ အီအိုင်ကိုးထုတ် လိုအပ်လာပါတယ်။ အီအိုင် ကိုးပြားတစ်ချပ်ရဲ့ ပုံသေနည်းကို ပြန်လဲ အသုံးပြုပြီး ယခုသုံးရမယ့် အီအိုင်သံပြားတစ်ချပ်ရဲ့ အရွယ်အစားကို သိဖို့လိုလာပါ တယ်။ အလယ်သံပြားအကျယ် = x"ကို အခြေခံထားရင်

(6) P, = Primary Amp


ý (ŋ)

(c)	ပြတင်းပေါက်ရဲ့အကျယ်	=	½ x" .
(L)	အိုင်ရဲ့ အရှည်	-	3 x"
(၃)	ပြတင်းပေါက်အမြင့်	-	1 1/2 X"
(9)	အီ သံပြားအမြင့်	.1	2 x"

ဦးအုန်းမြိုင်(လျှပ်စစ်) e	တစီမှ	စီစီသို့
	ယခု အလယ်သံပြား အကျယ်	ກິ 0.7"	လက်မဖြစ်ရင်
. (0)	ပြတင်းပေါက်ရဲ့ အကျယ်ကို	=	1/5 x 0.7
		=	0.35"
(L)	အိုင် ရဲ့အရှည်	=	3 x 0.7
		=	3 x 0.7
		=	2.1"
(२)	ပြတင်းပေါက် <mark>အမြင့်</mark>	=	1½ x".
		=	³ / ₂ x 0.7"
		=	1.05
(9)	အီ သံပြား အမြင့်	=	2 x 0.7
		=	2 x 0.7"
		=	1.4"

ယခု ဖော်မာ အရွယ်<mark>အစား ရှာရလွယ်ကူသွားပါပြီ။</mark>

x = 0.7", y=1" နဲ့ z=1.05" ရှိရမယ်။

ė(6)

e

မူလကွိုင်ကို ဂိတ်နံပါတ် 38 နဲ့ အပတ်ပေါင်း 3000 ပတ်ရမယ်။ ဒုတိယကွိုင်ကို ဂိတ်နံပါတ် 22 နဲ့ အပတ်ပေါင်း 160 ပတ်ရမယ်ဆိုတဲ့ အဖြေတွေနဲ့ မလုံလောက်သေးဘူး။ ကြိုးဘယ်နှစ်ပေါင် (အောင်စ) ဝယ်ရမယ်။ ကြိုးပတ်ပြီးရင် ပြတင်းပေါက် အကျယ်နဲ့ ဝင်ဆံ့မဆံ့ ကြည့်ရအုံးမယ်။

ပြတင်းပေါက်အကျယ်က 0.35" ရှိတော့ ကြိုးပတ်ပြီးရင် အံဝင်ဂွက်ကျ ရှိဖို့လိုတယ်။

ဇယားကွက်ကို အသုံးပြုပြီး တွက်ကြည့်ရအောင်။

ແພງ: ເອດ SWG No. 38 ဟာ

22900 Turns မှာ	I Sq	inches
:. 3000 Turn		1 x 3000
	#	22900
	=	0.13 Sq inches

00	ဒီစီမှ	ဒီစီသို့	ဦးအုန်းမြိုင်(လျှပ်စစ်)
	ແມນ:ສາຊ SWG No. 22 ບາງ	1089 T	urns yo 1 Sq inches
		·. 160	Turn = $\frac{1 \times 160}{1089}$ = 0.14 Sq inches
	မူလကွိုင်နဲ့ဒုတိယကွိုင်တို့ကို အပတ်ပေါင်းဧရိယာ	= =	0.13 + 0.14 0.27 Sq inches
	လယ်သာလိုက် စက္ကူအလွှာများရဲ့အထူ (Insulat	ion Paper	Thickness) ၊ Sq inches မှာ 7/6" ခန့်ထားမယ်ဆိုရင်
	ဧရိယာပေါင်း	=	0.27 + 0.0625
		=	0.3325 Sq inches ရမယ်
ထည့်လို့ရ	ပြတင်းပေါက်မှာ တိတိကျကျ ဝင်ဆံ့မဲ့ သဘော မယ့် သဘောဆောင်တယ်။	ရှိတယ်။ ဂ	ရိုင်ကြိုးပတ်ပြီးရင်၊ အီ အိုင် သံပြားများ လွယ်ကူစွာ
	အတွင်းတစ်ပတ် ပေအရှည်	=	2 (X"+ Y")
		=	2 (0.7"+1")
		=	2 x 1.7
	<i>*</i>	=	3.4"
	လေားအရ ဂိတ်နံပါတ် SWG No. 38 ဟာ 1" မှ	o 151 Tr	uns ဆန့်တယ်။
	. 1.05"	=	151 x 1.05"
		=	158.55 Turns
		=	158.5 Turns
	🙃 အလယ်အူတိုင်မှာရှိမယ့် တစ်ထပ် အပတ်ရဉ	<u>S</u> =	158.5 Turns ဖြစ်တယ်။
	မူလကွိုင်ရဲ့ အထပ်ပေါင်း	=	အပတ်ပေါင်း တစ်ထပ် အပတ်ရည်
		=	3000
			158.5
		=	18.92
		=	19 αδ
	မူလကွိုင်ဟာ အလည်အူတိုင်မှာ 19 ထပ် ရှိရမယ်		
	ဇယားအရ SWG No. 38 ဝါယာအချင်း	12	0.0060 လက်မ ရှိတယ်။
	ဝါယာ 19 ထပ်ရဲ့ အချင်း လက်မပေါင်း	=	0.0060 x 19
		=	0.114 လက်မ ရှိမယ်။

For Knowledge & Educational Purposes

ဦးအုန်းမြိုင်(လျှပ်စစ်)		အေစီမှ	ဒီစီသို့	00
အပြင်တစ်	ပတ်အရှည်ကို ရှာ ရမယ်			
တစ်ပတ်အ	ඉඩ		=	(8 ဖက် x 19 ထပ်ရှိ လက်မ) + အတွင်းတပတ်အရှည်
			=	(8 x 0.114) + 3.4"
			=	4.312 လက်မ ရှိတယ်။
ျမ်းမျှတစ်	ပတ်အရှည်		= .	အပြင်တစ်ပတ်အရှည် + အတွင်းတစ်ပတ်အရှည် 2
			=	4.312" + 3.4"
				3.856 inches
ပေဖွဲ့သော	3.856		=	0.32 ft
မူလတ္ပိုင်ရဲ့	ပေအရှည်		=	ပျမ်းမျှတစ်ပတ်ပေအရှည် × အပတ်ပေါင်း
			=	0.32 x 3000 T
			=	960 ft
အလေးချိန်	ကို ပေါင်ဖြစ်စေ၊ အော	င်စဖြစ်စေ ဖွဲ့ရ	မယ်။	
ဇယားအရ	SWG No. 38 ഗാ	1000 ft		0.109 lbs
		∴ 960 ft	=	0.109 x 960 1000
	<i></i>		=	0.104 ටෙරි
		အောင်စဖွဲ့	m	0.104 x 16 အောင်စ
			=	1.6 အောင်စ
ဝယ်ရမယ့်	အလေးချိန် 2 အောင်ရ	စ ဆိုရင် လုံလေ	ဘက်ပါပြီ၊	1

မူလကွိုင်ရဲ့ အပြင်တစ်ပတ်အရှည်ဟာ 4.312 လက်မရှိတယ်လို့ တွက်ခဲ့ပြီးပြီ ခုတိယကွိုင်ကို မူလကွိုင်ပေါ်မှာ ထစ်ပြီး ပတ်ရမယ်။ ဒါကြောင့် ခုတိယကွိုင်ရဲ့ အတွင်းအပတ်အရှည်ဟာ 4.312 လက်မပဲ ရှိရမယ်။

.

လယားအရ SWG No. 22] လက်မ အပတ်ရေ 🔗	=	33 Turns ရှိတယ်။
	1.05 လက်မ အပတ်ရေ	=	33 x 1.05
		=	34.65

တစ်ထပ် အပတ်ရေ 34.65 ပတ် ဖြစ်တယ်။

•

ວງ

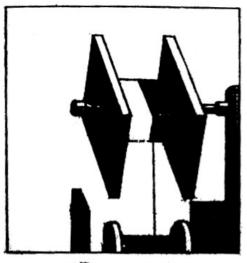
		ဒီစီမှ ဒီစီသို့			ဦးအုန်းမြိုင်(လျှပ်စစ်)
ဒုတိယကွိုင်ရဲ့ အထပ်ပေါင်း			я в	အပတ်ပေါင်း တစ်ထပ်အပတ်ရေ 160 Turns 34.65 4.617 ထဝ် (5 ထပ်)	
ဒုတိကွိုင်ဟာ အလည်အူတိုဂ် ဇယားအရ SWG No. 22 ရဲ ဝါယာ 5 ထပ်ရဲ့ အချင်းလက်	ဝါယ		N. N. N	5 ထဝ် ရှိရမယ်။ 0.028 လက်မဖြစ်တယ် 0.028 x 5	Su
အပြင်တစ်ပတ်အရှည်	=		5 œ	0.14 လက်မရှိမယ်။ ၁ပ်ရှိလက်မ) + အတွင်း၀	တစ်ပတ်အရှည်
ပျမ်းမျှတစ်ပတ်အရှည်		5.432 + 4 2 9.744 2		ည် + အတွင်းတစ်ပတ်ဒ 2 2	အရှည်
ပေဖွဲ့သော်	1	4.872	0.40	6 cu	
ဒုတိယကွိုင်ရဲ့ ပေအရှည်	-	ပျမ်းမျှတစ်ပတ်ဒ 0.406 x 160 64.96 ပေ	ာရှည်	x အပတ်ပေါင်း	
အလေးချိန်ကို ပေါင်ဖြစ်စေ ဇယားအရ SWG No. 22	၊ အော ဟာ 1(င်စဖြစ်စေ ဖွဲ့ပြရမ	o 2.3	37 ပေါင်	·
64.96 ပေအရှည်ရှိက	н	1000 0.15395 ບေါင်			
အောင်စဖွဲ့	H H	0.15395 x 16 2.463			
မူလကွိုင် SWG No. 38 (ဒဏ္ဍယာဆိုင် SWG No. 78				ŕ	

ိုတိယကြိုင် SWG No. 22 (၂) အောင်စ ခွဲဝယ်ရမှာ ဖြစ်တယ်။

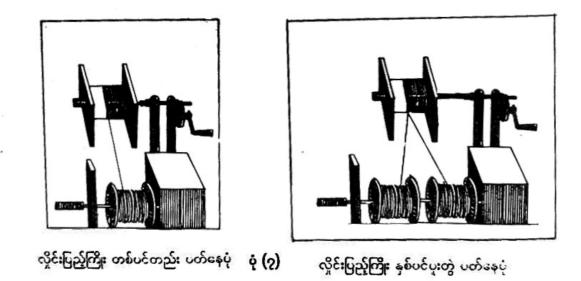
ဦးအုန်းမြိုင်(လျှပ်စစ်)

SWG ၀ါယာဂိတ်နှင့်အင်ပီယာဆက်သွယ်သောယေး၊

90


SWG	392	cluos	clu>	olwadolacy	merumu	appropriate:		60 0000	CU 600	AW
Se		အချင်း	. i ∫ge cc	ေရိယာ	Bigoic	aming	ကျက်က	ŝ	10000	G
the ada	620	combu	mm	e0794:0000	ဘပတ်ရေ	porouer	cuird	eui2 44	20 C	
00	190.2	0.348	8.83	0.0951	2.6	6.25	121100	366.5	0.0852	
0	164.8	0.324	8.22	0.0824		9	105000	317.7	0.0984	
1	141.4	0.300	7.62	0.0707		9.61	90000	272 4	0.115	1
2	119.6	0.276	7.01	0.0598		12.96	76180	230.5	0.136	
3	99.8		6.40	0.0499	4	16	63500	192.2	0.163	2
4	84.6		5.89	0.0423	4.3	18.49	53820	162.9	0.192	3
5	70.6		5.38	0.0353	4.7	22.09	44940	136	0.230	4
6	68	• •	4.87	0.029	5.2	27.04	26860	111.6	0.280	-
7	48.6	0.176	4.47	0.0243		31.36	30980	93.75	0.334	5
8	40.2		4.06	0.0201	6	36	25600	77.84	0.404	6
9	32.6	0.144	3.65	0.0163		44.89	20740	62.76	0.497	7
10	25.8	0.128	3.25	0.0129	7.6	57.76	16380	49.59	0.63	8
			2.94	0.0106	8.5	72.25	13460	40.73	0.766	9
11	21.2	0.166			9.2	84.64	10820	32.83	0.956	1 1 1 1
12	17	0.104	2.64	0.0085				25.62		
13	13.2	0.092	2.33	0.0066	10.8	116.64	8464 6400	19.37	1.220	11
14	10	0.08	2.03	0.0050	12.1	146.41				
15	6.14	0.072	1.82	0.0041	13.7	187.69	5184	15.2	1.997	13
16	6.040	0.64	1.62	0.0032	14.8	219.04	4096	12.40	2.541	14
17	4.920	0.056	1.42	0.0025	16.9	285.61	3136	8.50	3.330	15
18	3.620	0.048	1.21	0.0018	19.7	388.09	2304	6.97	4 4 9 0	16
19	2.520	0.040	1.01	0.0013	23.5	552.25	1600	4.84	6.450	18
20	2.040	0 036	0.91	0.00100	26	676	1246	3.29	7.460	19
21	1.608	0.032	0.81	0.00080	29.2	852	1023	3 10	10.11	20
22	1.240	0.028	0.71	0.00062	33	1087	784	2.37	13.21	21
23	0.940	0.024	0.60	0.00045	38.3 42.2	1513 1789	576 484	1.74	17.90 21.30	22 23
24 25	0.76	0.022	0.55	0.00031	46.5	2070	400	1 21	25.88	24
26	0.510	0.018	0.45	0.00025	51.5	2650	324	0 981	31.96	25
27	• 422	0.0164	0.41	0.00021	56.5	3190	270	0 814	38.40	26
28	0.354	0.0148	0.37	0.00017	62.5	3900	219	0 663	47.10	
29	0.290	0.0136	0.34	0.00014	67.6	4550	185	0.566	55.90	27
30	0.242	0.0124	0.31	0.00012	74.6	5550	158.5	0.465	67 10	28
31	0.212	0.0116	0.29	0.00011	79.4	6300	144.7	0.407	76.6	29
32	0.184	0.0108	0.27	0.000092	85.7	8300	116.6	0 353	88.5	
33	0.156	0.0100	0.25	0.000078	91.7	8400	110	0.303	103.5	30
34	0.123	0.0092	0.23	0.000066	100	10000	84.64	0.256	122	31
35	0.110	0.0084	0.21	0.000055	104	12000	70.5	0 214	146	32
36	0.090	0.0076	0.19	0.000045	120	14500	52.76	0.176	179	32
37	0.072	0.0063	0.16	0.000036	135	18200	46.25	0.14	228	33
38	0.056	0.0060	0.15	0.000028	151	22900	36	6.109	287	34
39	0.042	0.0052	0.13	0.000021	175	30600	27	0.082	383	35
40	0.036	0.0048	0.12	0.000018	180	35600	23.04	0.07	448	36
41	0.030	0.0044	0.11	0.000015	208	43000	19.36	0.059	533	36
42	0.024	0.0040	0.10	0.000013	227	51000	16	0.048	645	37
43	0.020	0.0036	0.09	0.000010	256	85000	12.96	0.039	796	38
44	0.016	0.0032	0.08	0.000008	285	81000	10.24	0.031	1010	40

.


09

ဒီစီမှ ဒီစီသို့ ဦးအုန်းမြိုင်(လျှပ်စစ်)

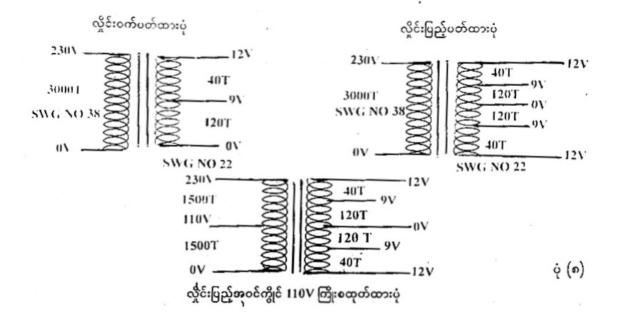
လှိုင်းပြည့်ကြိုးတစ်ပင်တည်းပတ်နည်းနဲ့ လှိုင်းပြည့်ကြိုးနှစ်ပင် ပူးတွဲပတ်နည်း

Soggente Sustanias point

.

ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့


ວງ

လှိုင်းဝက်နဲ့ လှိုင်းပြည့် - ဘယ်နည်းနဲ့ ပတ်ကြမှာလဲ။

ထရန်စဖော်မာ ပုံတွေနဲ့ ဖော်ပြခဲ့စဉ်က လှိုင်းဝက်ဆိုရင် ဒုတိယကွိုင် အေစီဗို့ တစ်စစီ ထုတ်သွားရမယ်။ ၈\'-9\'-12\/

အဘယ်၍ လှိုင်းပြည့်ပတ်မယ်ဆိုရင် အေစီဗို့ နှစ်စထုတ်ရမယ်။ (12V-9V-0V-9V-12V)ဖြစ်မယ်။

ုတိယကွိုင်ကြိုးအစမှ အဆုံး 160 Turns ဆိုတာက၊ လှိုင်းဝက်အတွက် ဖြစ်တယ်။ ဒါကြောင့် ကြိုးဝယ်ရင် 2½ အောင်စ လိုအပ်တယ်။ လှိုင်းပြည့်ပတ်မယ်ဆိုရင် 160 Turns + 160 Turns ဖြစ်လို့ 2½ အောင်စ + 2½ အောင်စ၊ စုစုပေါင်း (၅)အောင်စ ဝယ်ရမယ်။ ဆားကစ်အရ ပုံဖော်ကြည့်ရအောင်။

110 V ကြိုးစက ထုတ်ရတာ လွယ်ပါတယ်။ ဘယ်ထရန်

စဖော်မာမဆို၊ မူလက္ရိုင်ကြိုးအပတ်ပေါင်းရဲ့ ထက်ဝက်ဟာ 110 V ကြိုးစပဲ ဖြစ်တယ်။ အပတ်ရည် 500 Turns ပတ်ရင် 110 V အတွက် ကြိုးစဟာ 250 Turns မှာ ဖြစ်မယ်။ အပတ်ရည် 1000 Turns ပတ်ရင် 110 V ကြိုးစဟာ 500 Turns မှာ ဖြစ်တယ်။

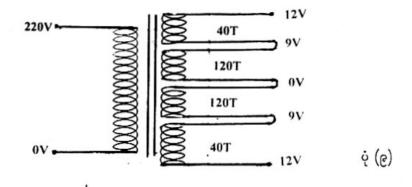
ဘယ်နည်းနဲ့ပတ်ရင် ကောင်းမလဲဆိုတာ မေးစရာရှိတဲ့ မေးခွန်းတစ်ခုပါပဲ။ လှိုင်းဝက်နဲ့ပတ်ထားမယ်ဆိုရင် ဗို့အား ထွက်မှုနှစ်မျှိုးပဲရမယ်။

(0V-9V) နဲ့ (0V-12V) ဖြစ်တယ်။

လှိုင်းပြည့်နဲ့ပတ်ထားမယ်ဆိုရင် ဗို့အားထွက်မှု (၄)မျိုးရမယ်။

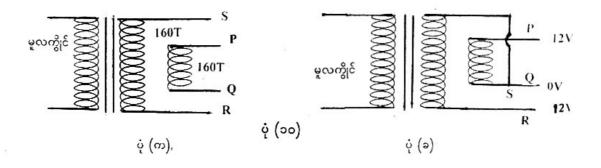
(0V-9V), (0V-12V), (9V+9V=18V), (12V+12V=24V)

ဒါကြောင့် ဈေးကွက်မှာ လှိုင်းပြည့်ပတ်ပြီး ရောင်းတာများတယ်။ လှိုင်းဝက်ကပတ်ထားရင်၊ အရောင်းလေးတယ်။ ဝယ်သူ့ရှားတယ်။ လှိုင်းပြည့်မှာက ဗို့အားကို ကြိုက်သလို၊ ယူထုတ်နိုင်လို့ လှိုင်းပြည့်က ပိုပြီးတွင်ကျယ်ပါတယ်။ ယခုလဲ လှိုင်းပြည့်ပတ်နည်းသုံးမယ်လို့ ဆုံးဖြတ်ကြလိုက်ရအောင်။ 56

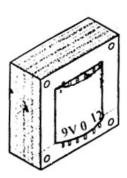

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

လှိုင်းပြည့်ကြိုးတစ်ပင်ထဲပတ်နည်းနဲ့ လှိုင်းပြည့်ကြိုးနှစ်ပင်ပူးတွဲပတ်နည်း -


(၁) လှိုင်းပြည့်ကြိုးတစ်ပင်ထဲပတ်မယ်ဆိုရင် -

မူလကွိုင်ပတ်ပြီးသွားပါက စက္ကူပါးဖုံးအုပ်ပေးရမယ်။ စက္ကူပါးပေါ် မှာ ဒုတိယကြိုးပတ်ရမယ်။ အတွင်းကြိုးမှစပြီး 12 V တညီထဲ ပတ်သွားရမယ်။ 40 Turns ပတ်သွားလို့ပြည့်သွားရင် 9V ကြိုးစခေါက်ချိုး ထုတ်ပေးရတယ်။ 9V မှတစ်ဆင့် 120 Turns ဆက်ပတ်သွားရမယ်။ ပတ်ရေပြည့်ရင် 0V ကြိုးစခေါက်ချိုးချိုးပြီး ထုတ်ထားရမယ်။ 0V မှတစ်ဆင့် 120 Turns ဆက်ပတ်သွားပြီး 9V ကြိုးစ ခေါက်ချိုး ချိုးထုတ်ရမယ်။ 9V ကြိုးစထုတ်ပြီးသွားရင် 40 Turns ပတ်ပြီး၊ အပေါ် ဆုံးကြိုးစ 12V ကြိုးကို၊ ထုတ်ရပါမယ်။ ကြိုးအစမှ အဆုံးပတ်သွားတယ်။ လိုချင်တဲ့ Volt ကို ကြိုးခေါက်ချိုးချိုးပြီး ကြိုးစထုတ်ပေးရတယ်။


(၂) လှိုင်းပြည့်ကြိုးနှစ်ပင်ပူးတွဲ ပတ်မယ်ဆိုရင်

မူလကွိုင်ပတ်ပြီးသွားပါက စက္ကူပါး ဖုံးအုပ်ပေးရမယ်။ စက္ကူပါးပေါ်မှာ ဒုတိယကွိုင်ကြိုးပတ်ရမယ်။ ပုံ (က)မှာ ပြထားသလို 2½ ပေါင်စီရှိတဲ့ ကြိုးဘီးနှစ်လုံးမှ နှစ်ဆ Q နဲ့ R ကို အပြင်ထုတ်ထားပြီး အပတ် 160 Turns ပတ်သွားရမယ်။ ကြိုးပတ်ရည် ပြည့်လို့ကြိုးအဆုံး နှစ်ချောင်းဟာ P နှင့် S ဖြစ်မယ်။ ကြိုးစ Q နဲ့ ကြိုးစ R အဆုံး S တို့ကို ဆက်သွယ်ပေး လိုက်ရင် အလည်မှတ် 0V ဖြစ်သွားမယ်။ P နဲ့ R ကတော့ 12 V ကြိုးစနှစ်ချောင်း ဖြစ်သွားမယ်။ 9 V ထုတ်ချင်ရင်လဲ 120 Turns နှစ်ပင်ပူးပြီး ဖော်ပြခဲ့သလို၊ ပတ်သွားရ မယ်။ ကွိုင်ထုပ်ပေါ်မှာ 0V နှစ်ခု ဖြစ်လာမယ်။ (9V-0V-9V) နဲ့ (12V-0V-12V) တို့ဖြစ်တယ်။

ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့

ပတ်ပြီးသော ထရန်စဖော်မာများ

20

လှိုင်းဝက်ထရန်စဖော်မာ

လှိုင်းပြည့်ထရန်စဖော်မာ

လှိုင်းပြည့်ထရန်စဖော်မာ

အေစီက ဒီစီပြောင်းနိုင်ဖို့ ဗို့အားနှိမ့် ထရန်စဖော်မာပတ်ပြီးပြီ။ ဆိုလိုတာက အေစီ 220 V မှ အေစီ 12 Volt ပြောင်းပြီးပြီ။ ယခုလိုချင်တာက 12V ဒီစီနဲ့ ကားရင့်။

ဒီစီဖြစ်ဖို့ နိုင်အုပ်ကို သုံးရတော့မယ်။ နိုင်အုပ်ဆိုတာဘာလဲ။ ဘယ်လိုလုပ်ပေးမှာလဲ။ နိုင်အုပ်အကြောင်း သိထားရအုံး မယ်။

ဒိုင်အုပ်ဆွေမျိုးများနဲ့ မိတ်ဆက်ပေးပါမယ်။

ဒိုင်အုပ်အမျိုးမျိုး ရှိတယ်ကွဲ့။ အဓိကအုပ်စုနှစ်မျိုး ခွဲထားတယ်။

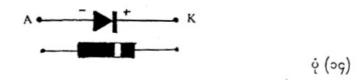
(က) ဆစ်နဲလ် ဒိုင်အုပ် Signal Diode နဲ့

(ခ) ပါဝါ ဒိုင်အုပ် Power Diode တို့ ဖြစ်ကြတယ်။

အင်ပီယာနဲ့ ပြောရရင် I Amp အောက် အသုံးပြုရတဲ့ ဒိုင်အုပ်နဲ့ I Amp အထက် အသုံးပြုရတဲ့ ဒိုင်အုပ်တွေ ဖြစ်တယ်။ ဒိုင်အုပ်မှာ အငုတ်နှစ်ခုပါတယ်။ ကက်သုတ် (Cathode) နဲ့ အဲလ်နုတ် (Anode) ဖြစ်တယ်။

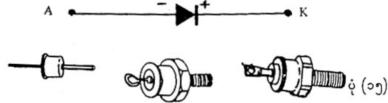
နိုင်အုပ်ရဲ့အရည်အချင်း ANODE အဲန္ဒတ် A – – – – – – – – – – – – K (Cathode ကဲသုတ်) ပုံ (၁၂) အမှတ် အေ မှအမှတ် ကေ သို့လျှပ်စစ်စီးကြောင်းစီးခွင့်ပြုတယ်။ကေ မှ အေ သို့စီးခွင့်မပြုဘူး။

(၁) စီတက်တာ စိုင်အုပ် (ခ) ဂျာမေနီယမ်ပွိုင့်ကွန်တက် စိုင်အုပ် Detector Diode Germanium point Contact Diode ကြိမ်နှုန်းမြင့် ရေဒီယိုလှိုင်းမှ လူတွေကြားနိုင်တဲ့ ကြိမ်နှုန်းနိမ့် အော်ဒီယိုလှိုင်း (Audio Wave) ပြောင်းလဲပေးတယ်။ ဖန်သားလို ကြည်လင်နေလို့ ဖန်ကြည်စိုင်အုပ်လို့လဲ ခေါ်ကြတယ်။


ວຄ

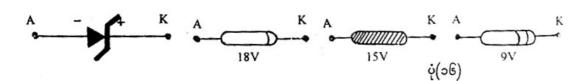
ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)


(၂) စီလီကွန်ဒိုင်အုပ် Silicom Diode

အင်ပီယာအလိုက် အကြီး၊ အသေး ကွဲပြားတယ်။ အေစီမှ ဒီစီပြောင်းရန် အဓိက အသုံးပြုတယ်။ ပါဝါဒိုင်အုပ် အုပ်စုမှာပါတယ်။ အများအားဖြင့် အမဲရောင်ပေါ် မှာ ငွေသားအရစ် ပါမယ်။

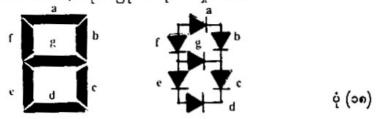
(၃) စီလီကွန်မတ်တဲလ်ခိုင်အုပ် Silicom Metal Diode


အပူချိန်ခံနိုင်ရည်ရှိတယ်။ အေစီမှ ဒီစီပြောင်းပေးတယ်။ ဒါပေမယ့် ဘက်ထရီအိုးတွေ အားသွင်းတဲ့အခါ အသုံးပြုတယ်။ အင်ပီယာများ များခံနိုင်ရည် ရှိတယ်။ အပူခံသတ္တုပြား Heat Sink ဟိဆင့်နဲ့ ဆက်သွယ်ပြီး သုံးရတယ်။ ပါဝါဒိုင်အုပ် အုပ်စုမှာပါတယ်။

(၄) စီနာ ခိုင်အုပ် Zener Diode

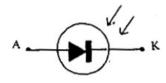
ဗို့အားထိန်း ပတ်လမ်းတွေမှာ သုံးရတယ်။ ဇီနာရဲ့ ဗို့တန်ဖိုးကို ကိုယ်ထည်ပေါ်မှာ ရေးမှတ်ထားတယ်။ နံပါတ် IN47 x x နဲ့ စတဲ့ ဒိုင်အုပ်ဆိုရင် ဇီနာတွေ ဖြစ်တယ်။ အထွက်ဗို့အား တည်ငြိမ်စေရန်အတွက် လှိုင်းစစ် Filter နေရာမှာ သုံးတာတွေ့ရတယ်။ မီတာဒိုင်ခွက်တွေထဲမှာလဲ စကေးငယ်တဲ့ ဗို့နဲ့စကေး ကြီးမားတဲ့ ဗို့အားတွေကို မတော်တဆ မှားယွင်း တိုင်းတာတဲ့အခါ မီတာမပျက်စီးစေရန် ကာကွယ်ပေးတဲ့အနေနဲ့ ဇီနာဒိုင်အုပ်ကို ထည့်သွင်းကာကွယ်ပေးထားတယ်။

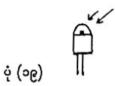
စီးနားရိုင်အုပ်(Break Down Diode)


ဦးအုန်းမြိုင်(လျှပ်စစ်)

(၅) အယ်းအီး၊စီ၊စိုင်အုပ် L:E.D Diode (Light Emitting Diode)

အလင်းရောင်ထုတ်လွှတ်ပေးနိုင်တဲ့ ဒိုင်အုပ်တွေ ဖြစ်တယ်။ အနီ၊ အဝါ၊ အစိမ်း အမှိုးမှိုးရှိတယ်။ 3 Volt အတွင်း ခံနိုင်ရည်ရှိတယ်။ ဘုရားမီးပြေးပတ်လမ်းတွေ အချက်ပြသင်္ကေတတွေ စာလုံးဖော်တဲ့ နေရာတွေမှာ အမှိုးမှိုးသုံးကြတယ်။

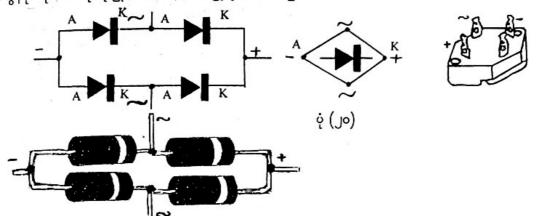



(၆) L.C.D (Liquid Crystal Display) Seven Segment L.E.D Seven Segment L.E.D ဟုခေါ် တယ်။ ပုံဖော်တဲ့နေရာမှာသုံးတယ်။ L.E.D ခွန်နှစ်လုံးပါတယ်။ ကက်သုတ်-မြေစိုက် (Negative Volt) ရှိသလို၊ အဲနုတ်-ဂရောင်း (Anode-Ground) အဲနုတ်မြေစိုက် အဝိုင်းလဲ ရှိပါတယ်။

(၇) ဖိုတိုဒိုင်အုပ် Photo Diode

အလင်းရောင်ကျရောက်မှ အလုပ်လုပ်တဲ့ ဒိုင်အုပ်မှိုးဖြစ်တယ်။ အဇေးထိန်းပတ်လမ်းတွေမှာလဲသုံးတယ်။ ဆိုလာဆဲလ် (Solar Cell) အဖြစ်လဲ သုံးတယ်။ ပုံသဏ္ဌာန် မတူပေမယ့် အလုပ်လုပ်တာချင်း တူညီမှုရှိတယ်။ စီလီကာ Silica ချပ်ပြား အဖြစ် ဂဏန်းပေါင်းစက်မှာလဲ သုံးတယ်။ အလင်းကျရောက်မယ်ဆိုရင် အဲနုတ်နဲ့ ကက်သုတ်ကြား 0.3 V မှ 0.7 Volt အတွင်း ငို့အားတစ်ခု ဖြစ်ပေါ် လာတယ်။

96


၂၀

ဒီစီမှ ဒီစီသို့

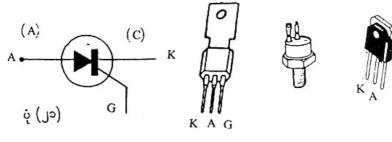
ဦးအုန်းမြိုင်(လျှပ်စစ်)

(၈) ရက်တီဖိုင်ယာ ခိုင်အုပ် Rectifier Diode

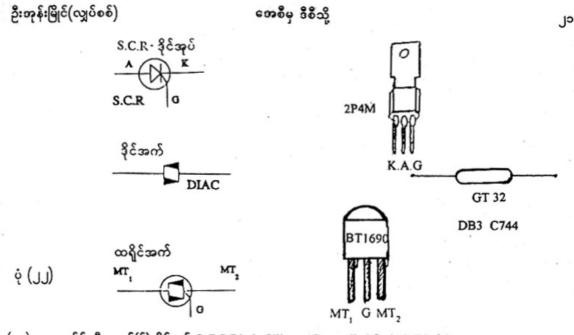
အေစီ မှ ဒီစီ (လှိုင်းပြည့်)ပြောင်းပေးတဲ့ နေရာမှာ သုံးတယ်။ တစ်အင်ပီယာမှစပြီး ၂၅ အင်ပီယာ အထိရှိနိုင်တယ်၊ စီလီကွန်ဒိုင်အုပ်လေးလုံးကို ပြိုင်ဆက် တန်းဆက် ပြုလုပ်ထားတာ ဖြစ်တယ်။

(၉) သိုင်း-ရီစွတာ Thy-Resistor

S.C.R (Silicon Controlled Rectifier Diode) လို့လဲ ခေါ်ကြတယ်။ ရိုးရိုးဒိုင်အုပ်နဲ့ အခြေခံတူညီမှုရှိတယ်။ ဂိတ် (Gate) လို့ခေါ်တဲ့ ထိန်းခြေထောက်တစ်ခု ပိုလာတယ်။ Cathode ကက်သုတ်၊ Anode အဲနုတ်၊ Gate ဂိတ်လို့ခေါ်တဲ့ ခြေထောက်သုံးချောင်းပါဝင်တယ်။ S.C.R ဟာ လျှပ်စစ်ကူးမှု တစ်ဆက်တည်းသာ လက်ခံပါတယ်။


သိုင်းရီစ္စတာကို

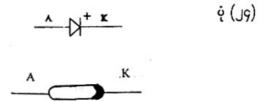
- (က) ဒိုင်အက်(စ်) DIAC (DIODE A.C)
- (ခ) ထရိုင်အက်(စ်) TRIAC (TRIODE A.C) လို့ ခွဲခြားထားပါတယ်။
- (က) ဒိုင်အက်(စ်)


ဒိုင်အက်(စ်)ကို P နဲ့ N လျှပ်ကူးချို့ပစ္စည်းဖြစ်တဲ့ Semi Conductor နဲ့ ပြုလုပ်ထားပါတယ်။ A.C လှိုင်းကို ခလုတ် သဖွယ် အဖွင့်အပိတ် ပြုလုပ်ပေးနိုင်ပါတယ်။ အဖိုနဲ့အမ Polarity နှစ်မျိုးလုံးအတွက် အလုပ် လုပ်ပေးနိုင်ပါတယ်။ မော်တာ-ပန်ကာ-မီးအလင်းအမှောင်စတဲ့ ဆားကစ်ပတ်လမ်းတွေမှာ သုံးရတယ်။

(ခ) ထရိုင်အက်(စ်)

ထရိုင်အက်(စ်)မှာ အငုတ်သုံးခုပါတယ်။ A.C လှိုင်းအတွက် လျှပ်စစ်ကူးမှု ပြုပေးနိုင်တယ်။ အလင်းရောင် ထိန်းချုပ်ပတ်လမ်း ပန်ကာအနှေးအမြန် ထိန်းချုပ်ပတ်လမ်းတွေမှာ သုံးတယ်။ ပါဝါ ဆုံးရှုံးမှု သက်သာတယ်။

1



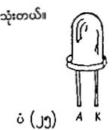
(၁၀) အက်စ်၊ စီ၊ အက်(စ်) စိုင်အုပ် S.C.S Diode Silicon (Controlled Switch Diode) ခြေတံလေးချောင်းပါတယ်။ S.C.R နှင့် သဘောတူခြင်း တူညီတယ်။ ခြေတံလေးချောင်းက အဲနုတ် (Anode) ၊ ကက်သုတ် (Cathode)၊ Anode-Gate အဲနုတ်ဂိတ်၊ Cathode-Gate ကက်သုတ်ဂိတ် တို့ဖြစ်တယ်။

A = အဲန္အတ် (ANODE)
A
$$\widehat{K}$$
 (ANODE)
A \widehat{K} (ANODE GATE)
KG = ကက်သုတ်ဂိတ် (CATHODE GATE)
 \widehat{V} (CATHODE)
 \widehat{V} (JP)

(၁၁) ဆွီချင်-စိုင်တုပ် Switching Diode

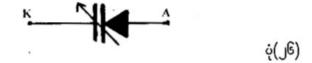
ံကြိမ်နှုန်းမြင့် ဆားကစ်ပတ်လမ်းတွေမှာ သုံးတယ်။ အဖွင့်/အပိတ် ခလုတ်သဖွယ်၊ အလုပ်၊ လုပ်ပေးတယ်။ ဈေးကွက်မှာတော့ နံပါတ် 1N 4148 အသုံးများတယ်။ 1N914 လဲ ရှိတယ်။ Signal Diode အတန်းအစားမှာ ပါဝင်တယ်။

စီစီမှ စီစီသို့


ဦးအုန်းမြိုင်(လျှပ်စစ်)

÷.,

(၁၂)


infrared L.E.D (IR- L.E.D အနီအောက်ရောင်ခြည် လှိုင်းကို ထုတ်ပေးတဲ့ LED ဖြစ်လို့ (T.V Remove) မှာ သုံးတယ်။

A K

(၁၃) ဗာရက်တာစိုင်တုပ် Varactor Diode (Variable Capactance diode)

ယင်းဒိုင်အုပ်အား ကျူးရှင်းကွန်ဒင်ဆာလို လုပ်ဆောင်ပေးပါတယ်။ အဆင့်မြင့် ရေဒီယိုကက်ဆက်များရဲ့ Digital Tuner များမှာ၊ တီဗီ၊ ဗီဒီယိုတွေရဲ့ Tuner များမှာ သုံးတာ တွေ့ရတယ်။

1 Amp နဲ့ 3 Amp စီလီကွန်ဒိုင်အုပ်များရဲ့ ဗိုခံနိုင်ရည်ဇယား

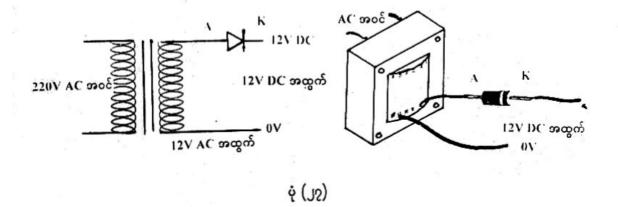
နိုင်အုပ်တွေရဲ့အကြောင်း သိပြီးပြီဆိုရင် ယခုအဓိက အသုံးပြုရမယ့် နိုင်အုပ်ကတော့ ဒီစီပြောင်းပေးမယ့် စီလီကွန် နိုင်အုပ်ပဲဖြစ်တယ်။ စီလီကွန်နိုင်အုပ်ရဲ့ အရွယ်အစားဟာ အင်ပီယာပေါ် မှာ မှီနေတယ်။ တစ်ဖက်ပါ ဇယားကွက်ကြည့်ပြီး လေ့လာကြည့်ရအောင်။

€	l Amp စီလီကွန်ဒိုင်အုပ်		ခံနိုင်သော ဗို့အား		3 Amp စီလီကွန်ဒိုင်အုပ်
1.	1 N 4001	->	50 V	+	I N 5400
2.	1 N 4002		100 V	←	I N 5401
3.	1 N 4003		200 V	4- -	1 N 5402
4.	-	1 1	300 V	-	1 N 5403
5.	1 N 4004	\rightarrow	400 V	←	1 N 5404
6.			500 V	←	1 N 5405
7.	- I N 4005	\rightarrow	600 V	←	1 N 5406
8.	1 N 4006	\rightarrow	800 V	←	1 N 5407
9.	I N 4007	->	10,00 V	4	IN 5408

စီလီကွန်ဒိုင်အုပ်တွေ အားလုံးကတော့ အေစီမှ ဒီစီ ပြောင်းပေးကြမှာပဲ။ ဒါပေမယ့် ယခုပတ်ထားတဲ့ ထရန်*စ*ဖော်မာနဲ့ ကိုက်ညီအသုံးပြုရမယ့် ဒိုင်အုပ်ကို ရွေးချယ်တတ်ရမယ်။

9L

ဦးအုန်းမြိုင်(လျှပ်စစ်)


အေစီမှ ဒီစီသို့

လှိုင်းစစ်မပါ ဒီစီပတ်လမ်း

စီလီကွန်ဒိုင်အုပ်ဟာ ဒီစီတော့ ပြောင်းပြီးပြီ၊ ဒါပေမယ့် ဒီစီ စစ်စစ်တော့ မရနိုင်သေးဘူး။ အေစီရဲ့ အမမှုန် ပါဝင်နေ သေးတယ်။ ဒီစီစစ်စစ်ဆိုတာက ဓာတ်ခဲတို့လို ဘက်ထရီအိုးတို့လို ပစ္စည်းတွေက ထုတ်ပေးတဲ့ လျှပ်စီးကြောင်းဟာ ဒီစီ စစ်စစ် ဖြစ်တယ်။ ဒိုင်အုပ်က ထွက်လာတဲ့ လျှပ်စစ်စီးကြောင်းဟာ ဒီစီတော့ ဖြစ်နေပါရဲ့။ အေစီအမှုန်တွေပါနေတယ်။ ပါလာတဲ့ အေစီ "အမ"မှုန်တွေ ပျောက်အောင် လုပ်ပေးရမယ်။

မေးစရာတော့ရှိတယ်။ ဒီစီဖြစ်နေပြီးပဲ။ ရေဒီယို နားထောင်မယ်။ ကက်ဆက်ဖွင့်မယ်။ သုံးလို့မရသေးဘူးလား။ ဖွင့်လို့မရဘူးမဟုတ်။ ဖွင့်လို့ရတယ်။ ရေဒီယိုနားထောင်ရင် အမမှုန်တို့ရဲ့ နှောက်ယှက်မှုဖြစ်နေလို့ ရေဒီယိုမှာ အသံကြည်ကြည် လင်လင် မကြားနိုင်ဘူး။ "ကလစ်-ကလစ်"နဲ့ အသံတွေရောပြွန်းနေလိမ့်မယ်။

ကက်ဆက်ဆိုရင် ပိုဆိုးမယ်။ ကက်ဆက်က ဒီစီမော်တာနဲ့ အလုပ်လုပ်တယ်။ ဒီစီမစစ်ရင် လည်ပတ်မှု မမှန်တော့ဘူး။ မော်တာလည်ပတ်မှု မမှန်ရင် ကက်ဆက်တိတ် (Tape)ရဲ့ ကြိုးသွားရာ တုန့်ဆိုင်းမှုတွေ ဖြစ်တတ်တယ်။ ထွက်လာတဲ့ အသံလဲ မမှန်တော့ဘူး။ ဒါကြောင့် သန့်စင်တဲ့ ဒီ၊စီ၊လျှပ်စစ်စီးကြောင်းရဖို့ သန့်စင်ပေးရအုံးမယ်။ ပါဝင်လာတဲ့ အေစီအမမှုန် တွေကို ဖမ်းယူနိုင်ဖို့ အကူအညီတောင်းရအုံးမယ်။ အကူအညီပေးမဲ့သူကတော့ ဒီစီကွန်ဒင်ဆာတွေပဲ ဖြစ်တယ်။

ဒီစီ ကွန်ဒင်ဆာ ဆိုတာက

ကွန်ဒင်ဆာ အဓိပ္ပါယ်ကတော့ သိုလှောင်ခြင်းလို့ အဓိပ္ပါယ်ရတယ်။ လျှပ်စစ်ကို သိမ်းထား၊ သိုထားနိုင်တဲ့ သတ္တိ ရှိလို့ တချို့က "လျှပ်သို"လို့လည်း ခေါ်ကြတယ်။ လျှပ်စစ်ဝေါဟာရကတော့ ကက်ပက်စီတာ (Capacitor) လို့ခေါ် တယ်။ စီ၊စီ ကွန်ဒင်ဆာရှိသလို၊ အေစီ၊ ကွန်ဒင်ဆာလည်း ရှိတယ်။ မော်တာ၊ ပန်ကာ၊ ရေခဲသေတ္တာစတဲ့ အသုံးအဆောင်ပစ္စည်းတွေ ထဲမှာ အေစီကွန်ဒင်ဆာတွေပါတယ်။ ပန်ကာမလဲရင်၊ မော်တာမလဲရင် လောင်ကျွမ်းသွားပြီလို့ ဆုံးဖြတ်လို့ မရသေးဘူး။ ပါဝင်နေတဲ့ ကွန်ဒင်ဆာတွေ ချို့ယွင်းသွားရင် အလုပ်မလုပ်တော့ဘူး။. ဒါကြောင့် ကွန်ဒင်ဆာကို ဖြုတ်ပြီ, ကောင်းမကောင်း စမ်းသပ်ရတယ်။ ကွန်ဒင်ဆာတောင်းရင် သူတန်ဖိုးအတိုင်း အသစ်ဝယ်ထည့်ရတယ်။

ကွန်ဒင်ဆာက ဘာတွေများ စွမ်းဆောင်ပေးတာလဲ။ လွယ်လွယ်ကူကူပြောရရင် လျှပ်စစ်ဓာတ်အားကို ခေတ္တခဏ သိုလှောင်ပေးတယ်။ ဒီ၊စီ လျှပ်စစ်ဓာတ်အားကို ဖြတ်သန်းခွင့်မပြုဘဲ၊ ပိတ်ဆို့ထားနိုင်တယ်။ အသံရှိုင်းနဲ့ အေစီ လျှပ်စစ်ဓာတ်ကို အလွယ်တကူ ဖြတ်သန်းခွင့်ပြုထားတယ်။ J9

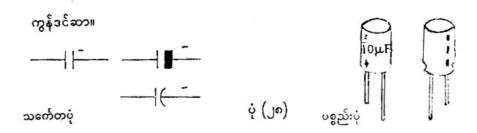
စီစီမှ စီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

စီစီ ကွန်စင်ဆာရဲ့ ဆွေမျိုးများ

ဒီစီသုံး ကွန်ဒင်ဆာတွေကို နှစ်မှိုးခွဲခြားထားတယ်။

- (၁) ပုံသေကွန်ဒင်ဆာ Fixed Capacitor
- (၂) တန်ဖိုးပြောင်းလို့ရတဲ့ ကွန်ဒင်ဆာ Variable Capacitor တို့ဖြစ်ကြတယ်။


ပံ့သေကွန်ဒင်ဆာမှာ

- (က) အီလက်တြိုလိုက်တစ်ကက်ပက်စီတာ Electrolytic Capacitor
- (ခ) နန်းအီလက်ကြိုလိုက်တစ် ကက်ပက်စီတာ Non Electrolytic Capacitor တို့ဖြစ်ကြတယ်။

နန်းအီလက်တြိုလိုက်တစ် ကက်ပက်စီတာမှာလဲ

- (က) ပိုလိုက်စတား ကက်ပက်စီတာ Polyester Capacitor
- (ခ) ဆဲရမစ်ဒစ် ကက်ပက်စီတာ Ceramic Disc Capacitor တွေ ပါဝင်ကြတယ်။

ယခု လေ့လာရမယ့် ကွန်ဒင်ဆာကတော့ အီလက်တြိုလိုက်တစ် ကက်ပက်စီတာပဲ ဖြစ်တယ်။ အေစီမှ ဒီစီ ပြောင်းတဲ့အခါ မရှိမဖြစ် ထည့်သွင်းရမှာ ဖြစ်တယ်။

ဒီစီ ကွန်ဒင်ဆာရဲ့ နံပါတ်တွေကို လေ့လာကြည့်ရင်။

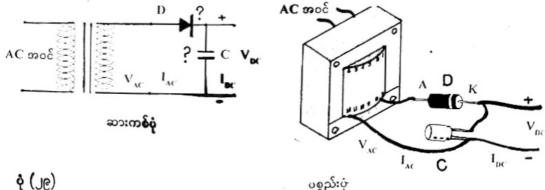
(c) 10 µf (400 V) (J) 5 mf 12 WV (Working Voltage)

(၃) 1000 MF 16 V လို့ ဖော်ပြထားမယ်။ ကွန်ဒင်ဆာရဲ့ ခြေထောက်တစ်ဖက်ဟာ တိုတယ်။ တိုတဲ့ဖက်က အန္ဒဘ် တန်ဖိုးဆောင်တယ်။ ဒီစီကွန်ဒင်ဆာဖြစ်လို့ ကိုယ်ထည်ပေါ်မှာ အနုတ်သင်္ကေတ ဖော်ပြထားတယ်။

÷	ဈေးကွက်မှာ ဝယ်လို့ လွယ်ကူတဲ့ ကွန်ဒင်ဆာတွေက								
	ခုဂဏန်းပါ	ဆယ်ဂဏန်းပါ	ရာဂဏန်းပါ	ထောင်ဂဏန်းပါ					
D1	lμſ	10 µf	100 μf	1000 µľ					
J۳	2.2 μf	22 µť	220 µf	2200 µf					
2"	3.3 µf	33 µf	330 µf	3300 µť					
<u>۶</u> ۳	4.7 µf	47 μľ	470 µf	4700 µf					
ງແ	6.8 µf	68 µſ	680 µf	6800 µť					
	ကွန်ဒင်ဆာရဲ့	ဗို့အားကတော့ ဒုတိယကွိုင်က	ထုတ်ပေးတဲ့ အေစီဗိုအားပေါ်မှာ	သင်္ချာနည်းအရ တွက်ပြီး					
	2 vuo			· · · · · · · · · · · · · · · · · · ·					

ရွေးချယ်ရမယ် -

(က)	16 V	(ə)	25 V	(o) 35 V	(ω) 50 V
(c)	100 V	(0)	250 V	(æ) 350 V	(ဇ) 250 V တို့ရှိကြတယ်။


ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့

ကက်ပက်စီတာ-ဖီလ်တာဆားကစ် (၁)

ဒီ၊ စီပတ်လမ်းအတွက် ကွန်ဒင်ဆာနဲ့ ဒိုင်အုပ်တွေကို ဘယ်လိုရွေးချယ်ပြီး အသုံးပြုတပ်ဆင်ရမယ်ဆိုတာ သင်္ချာနည်းနဲ တွက်ပြီးမှ ရွေးယူရပါမယ်။

ပုစ္ဆာအရ သိရှိခဲ့ပြီးတဲ့ အကြောင်းအရာတွေကို ပြန်သုံးရအောင်။ ဒီစီ 12 Volt နဲ့ ဒီစီ လျှပ်စီးကြောင်း 800 MA လိုအပ်တယ်။

ပစ္စည်းပုံ

လိုင်းဝက်ဆားကစ် တည်ဆောက်မယ်ဆိုရင် $0.7071 V_{DC} + 0.6$ VAC -----ပံ့သေအရ 0.7071 x 12 + 0.6 9.1 Volt = $2.1 \times I_{DC}$ = 2.1×0.8 Amp I_{AC} = 1.68 Amp 10⁴ x I_{DC} ဝယ်ယူရမည့် ကွန်ဒင်ဆာ C 😑 1.21 x V_{pc} 10⁴ x 0.8 1.21 x 12

= 550.9 µf

550.9 μf ဝယ်မရခဲ့ရင် 1000 μf ကိုပဲ ဝယ်သုံးရမယ်။

·ကွန်ဒင်ဆာရဲ့ ခံနိုင်တဲ့ဗို့အား C $= 1.7 \text{ x V}_{AC}$ 1.7 x 9.1 15.47 Volt 16 Volt

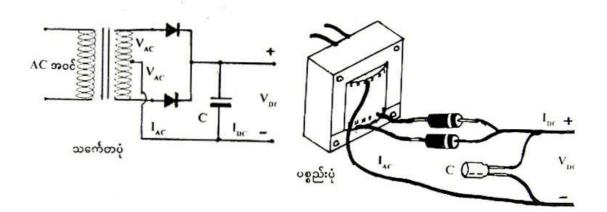
ကွန်ဒင်ဆာကို 1000 µf (16 V) ဝယ်သုံးရမယ်။ ဒိုင်အုပ်ကို စဉ်းစားကြည့်ရအောင် ?

ဒိုင်အုပ်ကို ဖြတ်စီးမဲ့ လျှပ်စီးကြောင်းဟာ I_{AC} ပဲ ဖြစ်တယ်။ ယခု I_{AC} = 1.68 Amp ဖြစ်လို့၊ ဒိုင်အုပ်ခံနိုင်ရည် ရှိရမယ့် လျှပ်စစ်စီးကြောင်းဟာလဲ 1.68 Amp ခံနိုင်ရမယ်။

۵

စီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)


နိုင်အုပ်ရဲ့ ခံနိုင်တဲ့ဗို့အား Diode (V) = $1.5 \times V_{Ac}$

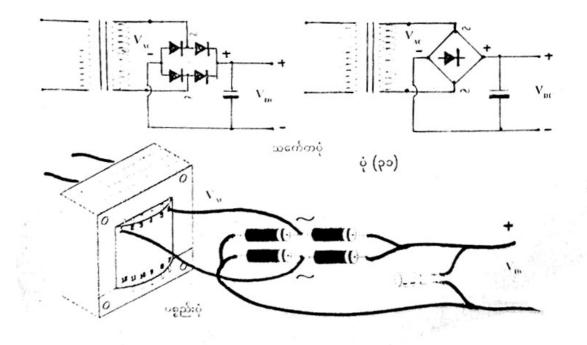
အသုံးပြုရမယ့် ဒိုင်အုပ်ဟာ 1.68 Amp နဲ့ 13.65 Volt ခံနိုင်တဲ့ ဒိုင်အုပ်ဖြစ်ရမယ်။ ဒိုင်အုပ်ဇယား ဖော်ပြတာကို ပြန်ကြည့်ရင် I N 5400 ဒိုင်အုပ်ဟာ 3 Amp နဲ့ 50 Volt ခံနိုင်တာတွေ့ရတယ်။

ရတဲ့အဖြေပေါင်းစုပြီး မှတ်ချက်ချရမှာက

စီလီကွန်ဒိုင်အုပ် 1 N 5400 ကို သုံးရမယ်။ Filter အဖြစ် သုံးပြုရမယ့် ကွန်ဒင်ဆာက 1000 µf (16 V) ဖြစ်ရမယ်။

ကက်ပက်စီတာ-ဖီလ်တာ-ဆားကစ် (၂) အကယ်၍ လှိုင်းပြည့်အလည်စထုတ် ဆားကစ်ဖြစ်ခဲ့ရင်

ų (po)


V_{pc}= 12 Volt, I_{pc} = 800 MA (0.8 Amp) (c) $V_{xc} = 0.7071 \times V_{pc} + 0.6$ 0.7071 x 12 + 0.6 9.1 Volt (J) 1 Ac 1.1 x l_{pc} 1.1 x 0.8 Amp = 0.88 Amp 104 x 1_{pc} ဝယ်ယူရမည့် ကွန်ဒင်ဆာ C = 0.48 x V_{pc} 10⁴ x 0.8 0.48 x 12 = 1388.8 µf 1388.8 µf က ဝယ်လို့မရပါ။ 2200 µf ကို ဝယ်သုံးရမယ်။ ဦးအုန်းမြိုင်(လျှပ်စစ်) တောစီမှ ဒီစီသို့ ကွန်ဒင်ဆာရဲ့ ခံနိုင်တဲ့ဗို့အား C_v = 1.7 x V_{AC} = 1.7 x 9.1 = 15.47 Volt = 16 Volt ကွန်ဒင်ဆာကို 2200 µf (16V) ဝယ်သုံးရမယ်။ ဒိုင်အုပ်ကို ရွေးချယ်ရမယ်။ 1_{AC} = 0.88 Amp ရှိလို့ နိုင်အုပ်ကို 0.88 Amp ခံနိုင်ရန် လိုအပ်ပါတယ်။ ဈေးကွက်မျာ 1 Amp နိုင်အုပ်ကို 0.88 Amp ခံနိုင်ရန် လိုအပ်ပါတယ်။ ဈိင်အုပ်ရဲ့ ခံနိုင်တဲ့ဗို့အား Diode (V) = 2.83 x V_{AC} = 2.82 x 9.1 Volt = 25.753 Volt

ာသုံးပြုရမယ့် ဒိုင်အုပ်ဟာ 0.88 Amp နဲ့ 25.753 Volt ခံနိုင်တဲ့ ဒိုင်အုပ်ဖြစ်ရမယ်။ ဒိုင်အုပ်ဇယား ဖော်ပြတာကို ပြန်ကြည့်ရင် 1N4001 ဒိုင်အုပ်ဟာ 1 Amp နဲ့ 50 Volt ခံနိုင်တာ တွေ့ရတယ်။

ရတဲ့အဖြေတွေကို ပေါင်းစုပြီး မှတ်ချက်ချရမှာက -

စီလီကွန်ဒိုင်အုပ် 1N4001 မှ 1N4007 အထိ ကြိုက်တာကို ဝယ်ယူအသုံးပြုနိုင်တယ်။ Filter အဖြစ် အသုံးပြုရမဲ့ ကွန်ဒင်ဆာက 2200µf (16V) ဖြစ်ရမယ်။

ကက်ဖတ်စီတာ-ဖီလ်တာ-ဆားကစ် (၃) အကယ်၍ လှိုင်းပြည့်ဘရစ်ချ် (Bridge) ဆားကစ် ဖြစ်ခဲ့ရင် -

JS

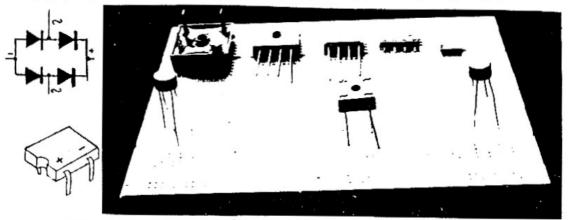
For Knowledge & Educational Purposes

ဦးအုန်းမြိုင်(လျှပ်စစ်)

စိစီဖု စိစီသို့ Jo V_{pc} = 12V, l_{pc} = 800 MA (0.8 Amp) (c) $V_{Ac} = 0.7071 \times V_{DC} + 1.2$ 0.7071 x 12 + 1.2 -9.7 Volt (J) IAC 1.6 x l_{pc} 1.61 x 0.8 Amp 1.288 Amp 104 x J_{oc} 104 x 0.8 0.48 x 12 = 1388.8 µf 1388.8 µf ဝယ်မရခဲ့သော် 2200 µf ကို ဝယ်ယူရမည်။ ကွန်ဒင်ဆာရဲ့ ခံနိုင်တဲ့ဗို့အား C_v = 1.7 x V_{AC} = 1.7 x 9.7 Volt 16.49 Volt :2 16.49 Volt ရှိမှာ မဟုတ်ဘူး။ 25 Volt သာ ရနိုင်ပါတယ်။ **ဒိုင်အုပ်ကို ရွေးချယ်ရမယ်။** ယခု I_{AC}=1.3 Amp ရှိတယ်။ ဒိုင်အုပ်လဲ 1.3 Amp ခံနိုင်ရမယ်။ 3 Amp ခံနိုင်ရည်ရှိတဲ့ ဒိုင်အုပ်ကို ဝယ်သုံးရမယ်။ ဒိုင်အုပ်ရဲ့ ခံနိုင်တဲ့ဗို့အား Diode (V) = 1.5 x V_{AC} = 1.5 x 9.7 = 14.55 Volt = 15 Volt ဒိုင်အုပ်ဇယားကို လေ့လာကြည့်ရင် 3 Amp နဲ့ 50 Volt ရှိတဲ့ ဒိုင်အုပ်က 1N5400 ဖြစ်တယ်။ ယခုစီလီကွန်ဒိုင်အုပ်က IN5400 သုံးရမယ်။ Filter ကွန်ဒင်ဆာက 2200 µf (25 Volt) ဖြစ်ရမယ်။

ကြိုးဂိတ်ကိုကြည့်၍ ဖီလ်တာ ကွန်ဒင်ဆာကို ရွေးချယ်တယ်။

ဖိလ်တာကွန်ဒင်ဆာကို ရွေးချယ်တဲ့အခါ ဒုတိယကွိုင်ရဲ့ ပတ်ထားတဲ့ ကြိုးဂိတ်ကိုကြည့်ပြီး ရွေးချယ်ကြတယ်။ ဂိတ်နံပါတ် (SWG No. 21, No. 22, No. 23) စတဲ့ ကြိုးတွေကို ရစ်ပတ်မယ်ဆိုရင် -


ကွန်ခင်ဆာတန်ဖိုး 1000 µf 16 V သုံးကြတယ်။ SWG No. 19 နဲ့ No. 20 ဆိုရင် 2000 µf , 2200 µf , 25 Volt. နဲ့ 3300 µſ ကို ဝယ်သုံးကြတယ်။

အေစီမှ ဒီစီသို့

Je

လှိုင်းပြည့်ဒိုင်အုပ်များ

လှိုင်းပြည့် Bridge Circuit ကို တပ်ဆင်တဲ့အခါ စီလီကွန်ဒိုင်အုပ် လေးလုံးကို အသုံးပြုရတယ်။ ယခုအခါ <mark>ဒိုင်အုပ်</mark> လေးလုံးကို ကိုယ်တိုင်တွဲနေရမဲ့အစား အသင့်တွဲပြီးသား "ဘရစ်ခ်ျံ"များ ဝယ်လို့ရပါတယ်။ ပုံနှင့်တကွ ဖော်ပြလိုက်ပါတယ်။

မျက်နှာငယ်ရတဲ့ ဒီစီပတ်လမ်း

ဖော်ပြခဲ့တဲ့ ဒီစီပတ်လမ်းတွေဟာ အားနည်းချက်ရှိတယ်။ ဖီလ်တာဆားကစ်ကြောင့် ဒီစီသန့်သန့် ဖြစ်လာပါပြီ။ ဒါပေမယ့် ဝန်လျှပ်စီးကြောင်းများလာရင် ရေဒီယို၊ ကက်ဆက်၊ အသံကျယ်ကျယ် နားထောင်ချင်လို့ တေလွန်း (Volume)ကို မြှင့်တင်လိုက်ဘဲ့အခါမှာ အထွက် ဒီစီဗို့အားဟာ မတည်ငြိမ်တော့ဘဲ ပြောင်းလဲနေပါတော့တယ်။ အဝင်အေစီဗို့အား (လိုင်းအဝင်) ကျဆင်းသွားရင်လဲ အထွက်ဒီစီဗို့အား ပြောင်းလဲသွားပြန်တယ်။

ဆိုလိုတာက ထရန်ဝဖော်မာကို 220 ဗို့ အခြေခံထားပြီး ပတ်ထားတော့ ဗို့အားနိမ့်မှာလည်း 12 ဗို့၊ 9 ဗို့၊ 6 ဗို့တွေဟာ တိကျွစွာထွက်ယ်။ ဒီစီလည်း တိတိကျကျ ထွက်မယ်။ ဒါပေမဲ့ 220 ဗို့ မဟုတ်တော့ဘဲ။ လိုင်းဗို့အား 200 ဗို့၊ 180 ဗို့ ကျဆင်းသွားရင် ဒီစိဗို့အားလဲ အပြည့်မရတော့ဘူး။ ကျဆင်းလာမယ်။ အထွက်ဒီစီပြောင်းလဲမှတော့ ရေဒီယို၊ ကက်ဆက်၊ အသံ၊ နားထောင်ကောင်းတော့မှာ မဟုတ်ဘူး။

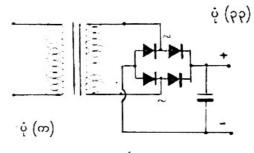
အဝင်အေစိဗို့ပြောင်းလဲလို့၊ အတွက်ဒီစီဗို့အား ပြောင်းလဲခြင်း (Line Regulation)နဲ့ ဝန်လျှပ်စီးပြောင်းလဲသဖြင့် အထွက်ဒီစီဗို့အားပြောင်းလဲခြင်း (Load Regulation)တို့နည်းနိုင်သမျှ နည်းရန်၊ ဗို့အားထိန်းပတ်လမ်း (Voltage Regulator) သို့မဟုတ် (Voltage Stabilizer) များ တည်ဆောက်ကြရတယ်။ ာကြောင့် ဒီစီဗို့အား တည်ငြိမ်မှုရအောင် ပြုလုပ်ရတော့မယ်။ ဘယ်လိုလုပ်ကြမှာလဲ။

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

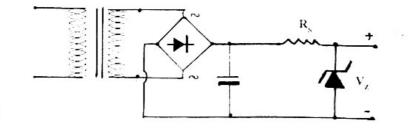
ဗို့အားထိန်းပတ်လမ်းများ (Voltage Regulator Circuits)

ဒီစီ ဗို့အားထိန်းပတ်လမ်းတွေကို လေ့လာကြည့်ရင်


- (က) ဇီနာ၊ ဒီစီ ဗို့အားထိန်းပတ်လမ်း၊
- (ခ) ထရန်စ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်း၊
- (ဂ) ရီစ္စတာ ဒီစီဗို့အားထိန်းပတ်လမ်းတွေဖြစ်တယ်။
- (က) ဇီနာ၊ ဒီစီဗို့အားထိန်းပတ်လမ်း

ų (ə)

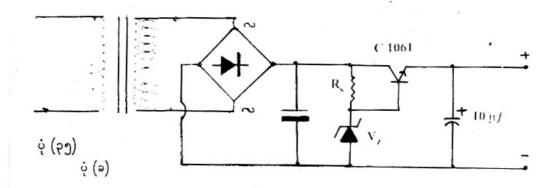
ဇီနာ ဒိုင်အုစ်ကို အသုံးပြုမယ်ဆိုရင် ဒီစီဗို့အားကို ထိန်းထားနိုင်တယ်။ ဆားကစ်ပတ်လမ်းတွေမှာ ဗို့အား တည်ငြိမ်မှု မရှိတဲ့အပိုင်းကို Un Regulated Voltage လို့ခေါ် တယ်။ ဗို့အားတည်ငြိမ်မှု ရှိတဲ့ အပိုင်းကို Regulated Voltage လို့ခေါ် တယ်။


ပုံ (က)ဟာ အဝင် AC <mark>ပြောင်းလဲနေရင် အထွက်ဒိစိ</mark>လဲ ပြောင်းလဲနေမယ်။ ပုံ(ခ)မှာက အထွက် ဒီစီမှာ ဇီနာဒိုင်အုပ်ကို ဗို့အားထိန်းအနေနဲ့ သုံးထားတာ တွေ့ရမယ်။

6 Volt (လေးထောင့်ထိုး) သုံးနေရတဲ့ ရေဒီယို၊ ကက်ဆက်ဆိုရင် $R_s = 6.8 \Omega (1 \text{ Walt})$ နဲ့ V_z ဇိနာ 6V ကို အသုံးပြုရမယ်။ ကားကက်ဆက်ဖွင့်မယ်ဆိုရင် $R_s = 10 \Omega(1 \text{ Walt})$ နဲ့ ဇိနာ $V_z = 12 \text{ Volt}$ ကို အသုံးပြုနိုင်တယ်။

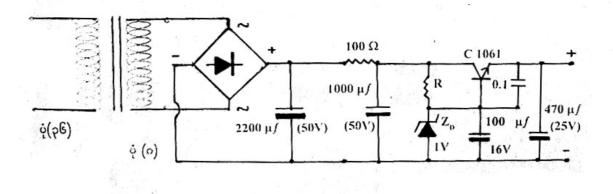
သင်္ကေတပုံ

ų (29)



အေစီမှ ဒီစီသို့

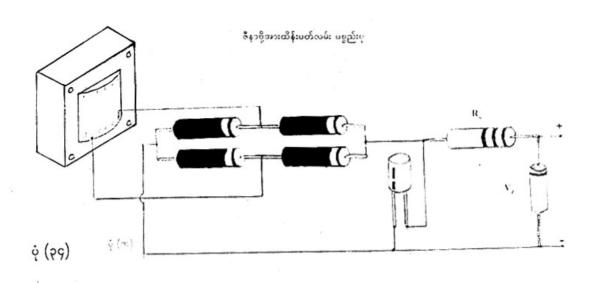
çç

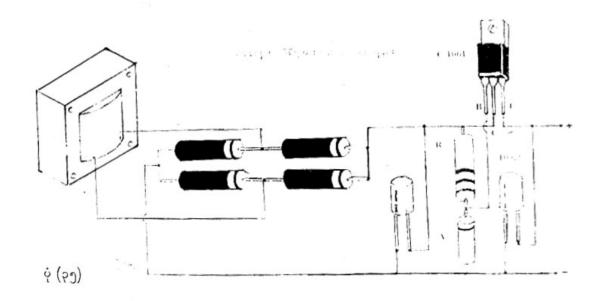

(ခ) ထရန်စစ္စတာ-ဒီစီဗို့အားထိန်းပတ်လမ်း

ဇိနာဗိုအားကို ထရန်စ္စတာရဲ့ Base ဘေ့စ်မှာ ပေးသွင်းပေးပြီး၊ အထွက်ဗိုအား V_a V_c - 0.7 ဖြစ်လာတယ်။ ဘေ့စ် လျှပ်စီးတန်ဖိုး အလွန်ငယ်ပါတယ်။ ဖော်ပြထားတဲ့ ဆားကစ်ဟာ ဇိနာ လျှပ်စီးကြောင်း ပြောင်းလဲမှု နည်းပါးတယ်။ ဒါကြောင့် အထွက်ဗို့အား ပိုပြီးတည်ငြိမ်မှု ရှိလာတယ်။ ပါဝါဆုံးရှုံးမှုဟာ ထရန်စ္စတာပဲရှိတယ်။ ဇိနာဒိုင်အုပ်မှာ နည်းတယ်။ ဝန်လျှပ်စီးများများ ခံနိုင်တဲ့ပတ်လမ်း ဖြစ်လာတယ်။

(ဂ) ရီစ္စတာ-ဒီစီဗို့အားထိန်းပတ်လမ်း

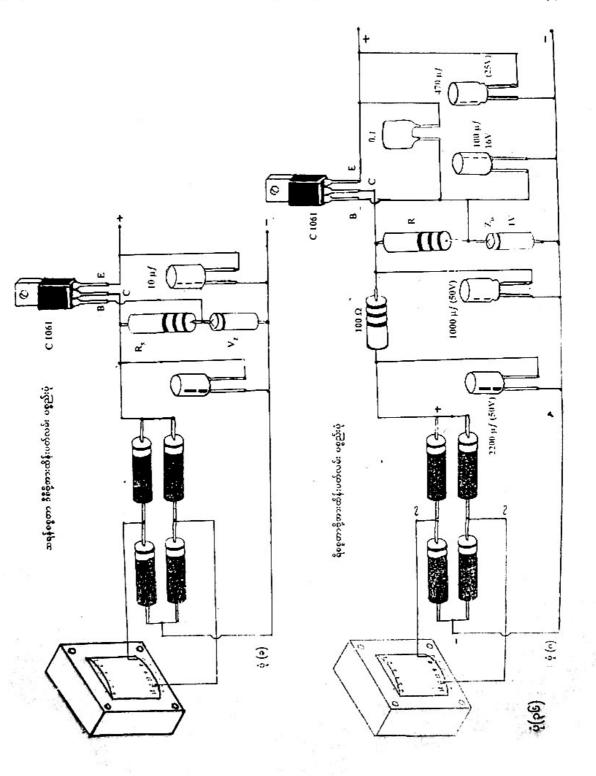
ပါဝါအင်ပရီဖိုင်ယာများနဲ့ တွဲဖက်ပြီး တည်ဆောက်ရတဲ့ Tone Pre. Mic-Pre စတဲ့ တည်ဆောက်မှုအပိုင်းတွေမှာ Volt တည်ငြိမ်စေရန် အသုံးပြုကြပါတယ်။ ဗို့အားတည်ငြိမ်မှုရှိလို့ အသံထွက်လဲ ကောင်းမွန်လာတယ်။ ရီစ္စတာတန်ဖိုးကို IK မှ 4.7K အတွင်း အမျိုးမျိုးပြောင်းလဲပေးမယ်ဆိုရင် မိမိ အလိုရှိတဲ့ ဗို့အားကို ရရှိနိုင်ပါတယ်။



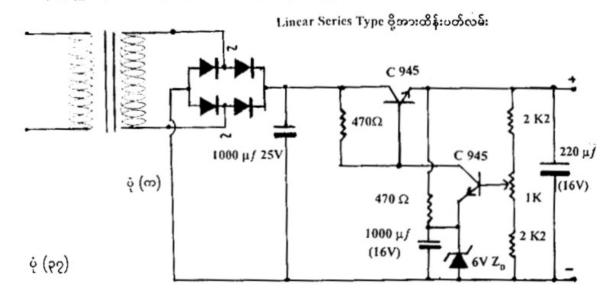

2J

,

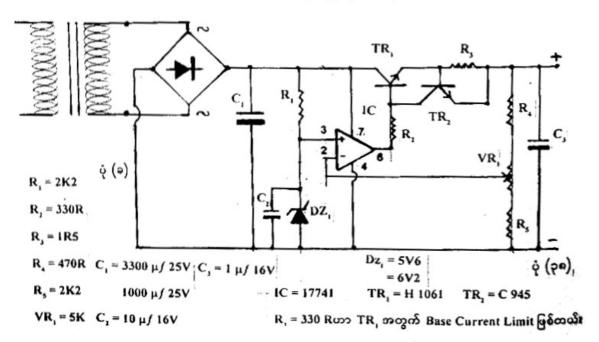
ဒီစီမှ ဒီစီသို့

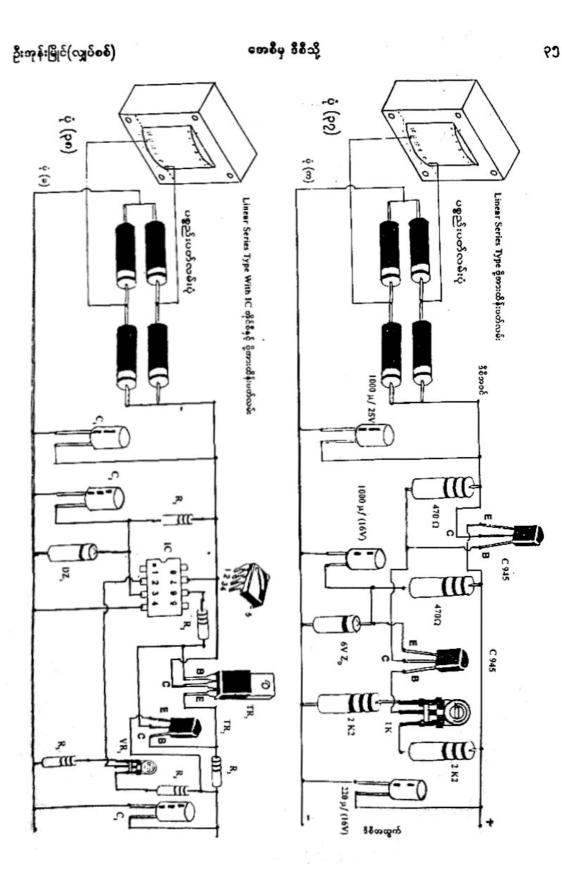

ဦးအုန်းမြိုင်(လျှပ်စစ်)

1


99

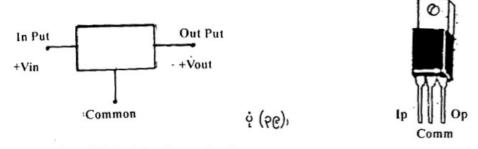
ဒီစီမှ ဒီစီသုံ့


္မ်ိဳးအုန်းမြိုင်(သျှ


ေအာက်ဖော်ပြပါ ဆားကစ်တွေကတော့ လျှပ်စီးကြောင်း 1 Amp အတွင်း အသုံးပြုနိုင်တယ်။ အထွက်ဒီစီဗို့အား တိတိကျကျ ရရှိစေရန် Preset ကို ချိန်ညှိပေးရမယ်။ ပုံ (က) ပုံ (ခ)

l AMP အတွင်း အသုံးပြုနိုင်သည့် ဒီစီဗို့အားထိန်းပတ်လမ်းများ

Linear Series Type With IC အိုင်စီနှင့် ဗိုအားထိန်းပတ်လမ်း



ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

ငုတ်သုံးငုတ်ရှိ မနိုင်စီဗို့အား ထိန်းပတ်လမ်း Three Terminal I.C Voltage Regulators

ငုတ်သုံးငုတ်ရှိ အိုင်စီ ဗို့အားထိန်းပတ်လမ်းတွေမှာ အသုံးပြုတဲ့ အိုင်စီထဲမှာ ဇီနာဒိုင်အုပ် လျှပ်စီးထိန်းပတ်လမ်း အထိန်းထရန်စစ္စတာစတဲ့ ပတ်လမ်းတွေကို ထည့်သွင်းတည်ဆောက်ထားပါတယ်။ လျှပ်စီးကြောင်းအဆွဲ လွန်ကဲလာရင်း အပူချိန် မြင့်တက်လာရင် မပျက်စီးစေရန် အလိုအလျောက်လဲ ကာကွယ်ပေးထားပါတယ်။ ငုတ်သုံးငုတ်က အဝင်ပိုင်း Input (i/p အထွက်ပိုင်း Out put (o/p) နဲ့ မြေစိုက် (Common (or) G) တို့ ဖြစ်ကြတယ်။

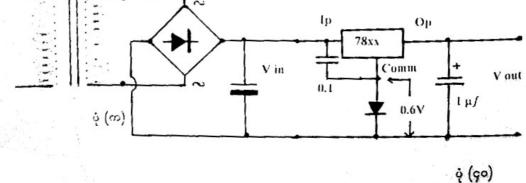
ငုတ်သုံးငုတ်ရှိ အိုင်စီကို နှစ်မျိုးခွဲခြားထားပါတယ်။

(၁) ပုံသေဗိုအားထိန်းပတ်လမ်း Fixed Voltage Regulator

- (က) I.C နံပါတ် 78 x x စီးရီးနဲ့
- (ခ) I.C နံပါတ် 79 x x စီးရီး နှစ်မျိုးထုတ်ပါတယ်။
 - (က) စီးရီးက အပေါင်းဗို့အားထိန်းပတ်လမ်းအတွက် ဖြစ်တယ်။
 - (ခ) စီးရီးက အနုတ်ဗို့အားထိန်းပတ်လမ်းအတွက် ဖြစ်တယ်။

ကြက်ခြေခတ်ထားတဲ့ နောက်ဆုံးကိန်းဂဏန်းနှစ်လုံးက ထုတ်ပေးမဲ့ ကိန်းသေဗို့အား တန်ဖိုးဖြစ်တယ်။ လိုချင်တဲ့ Volt ကို အခြေခံပြီး၊ အိုင်စီကို ရွေးရမှာ ဖြစ်တယ်။

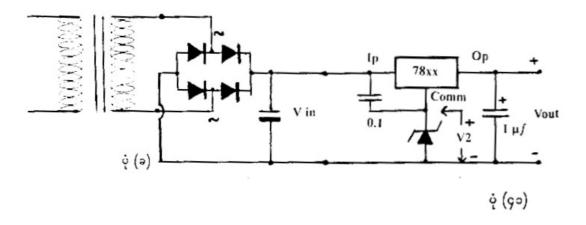
- (c) 7805 (J) 7806 (c) 7808 (c) 7809
- (၅) 7812 (၆) 7818 (၇) 7824 တို့ဖြစ်ကြတယ်။


နံပါတ်ရဲ့ နောက်ဆုံးဂဏန်းတွေဖြစ်ကြတဲ့ 0 5 ဟာ 5 Volt လို ဆိုလိုပါတယ်။ 18 ဟာ 18 Volt ကို ဆိုလိုပါတယ်။ ဖော်ပြခဲ့တဲ့ အိုင်စီတွေကို သုံးမယ်ဆိုရင်။ အဝင် 38 40 Volt မကျော်စေရဘူး။ လျှပ်စီးကြောင်း 1 Amp အထိ အသုံးပြုနိုင်တယ်။

(c)	အထွက်ဒီစီ	5 Volt	လိုချင်ရင်	IC 7805 ကို သုံးရမယ်။
(J)	အထွက်ဒီစီ	6 Volt	လိုချင်ရင်	IC 7806 ကို သုံးရမယ်။
(?)	အထွက်ဒီစီ	8 Volt	လိုချင်ရင်	IC 7808 ကို သုံးရမယ်။

http://www.khtnetpc.webs.com

For Knowledge & Educational Purposes


ဦးအုန်းမြိုင်(လျှပ်စစ်) အေစီမှ ဒီစီသို့ 25 လိုချင်ရင် IC 7809 ကို သုံးရမယ်။ (9) အထွက်ဒီစီ 9 Volt လိုချင်ရင် IC 7812 ကို သုံးရမယ်။ () အထွက်ဒီစီ 12 Volt အထွက်ဒီစီ လိုချင်ရင် IC 7818 ကို သုံးရမယ်။ (6) 18 Volt လိုချင်ရင် IC 7824 ကို သုံးရမယ်။ အထွက်ဒီစီ (2)24 Volt IC 78 စီးရီးမှာ Vin ဟာ Vout ထက် 3 Volt ပိုထားရမယ်။ ဥပမာ IC 7805 ကိုသုံးရင် Vin = 8 Volt ဖြစ်ရမယ်။ Vin = 5 Volt + 3 Volt = 8 Volt ဥပမာ IC 7812 ကိုသုံးရင် V in V out + 3 Volt 12 + 315 Volt ဆိုလိုတဲ့ သဘောက ထရန်စဖော်မာရဲ့ ခုတိယကွိုင်ကိုပတ်ရင် အေစီ 15 Volt ထွက်အောင် ပတ်ပေးရမယ်။ IC 78 x x စီးရီးရဲ့ ဗိုမြှင့်ပတ်လမ်းများ စီလီကွန်ဒိုင်အုပ်ကို စီးရီး အသုံးပြုမယ်ဆိုရင် (m) 5 Volt + 0.6 V (ဒိုင်အုပ်တစ်လုံး) IC 7805 သုံးရဲင် V out 25 5.6 Volt 5 Volt + 0.6 + 0.6 V (ဒိုင်အုပ်နှစ်လုံး) V out 6.2 Volt 5 Volt + 0.6 V + 0.6 V + 0.6 V (ဒိုင်အုပ်သုံးလုံး) V out = 6.8 Volt ဒိုင်အုပ်အရည်အတွက်ပိုလာရင် အထွက်ဒီစီမှာလည်း ပိုမြှင့်လာတာ တွေ့ ရမယ်။ lp Op 78xx

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

ဇိနာဗိုပြောင်းလဲပေးသလို အထွက်ဒီစီမှာလဲ ပိုမြှင့်လာတာတွေ့ရမယ်။

(ဂ) ရီစစ္စတာကို အသုံးပြုမယ်ဆိုရင်
 ရီစစ္စတာ R, ဟာ မိမိအသုံးပြုရမဲ့ အိုင်စီအပေါ် မူတည်တယ်။

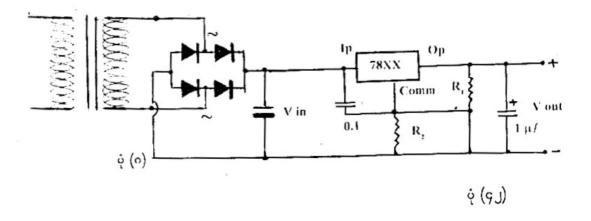
(c)	IC 7805	သုံးမယ်ဆိုရင်	R ₁ = 300 Ω	သုံးရမယ်။
(J)	IC 7806	သုံးမယ်ဆိုရင်	R, = 300 Ω	သုံးရမယ်။
(?)	IC 7809	သုံးမယ်ဆိုရင်	R ₁ = 470 Ω	သုံးရမယ်။
(9)	IC 7812	သုံးမယ်ဆိုရင်	R, = 750 Ω	သုံးရမယ်။
(c)	IC 7815	သုံးမယ်ဆိုရင်	R,=1 K Ω	သုံးရမယ်။

အကယ်၍ IC 7805 ကို သုံးပြီး အထွက်ဗို့ Vout 9 Volt လိုချင်တယ်ဆိုရင် ပုံသေနည်းကို သုံးပြီး R₁ တန်ဖိုး ရှာရမယ်။

$$\dot{R}_{2} = (\frac{Vout}{Vout (Reg)} - 1)R_{1}$$

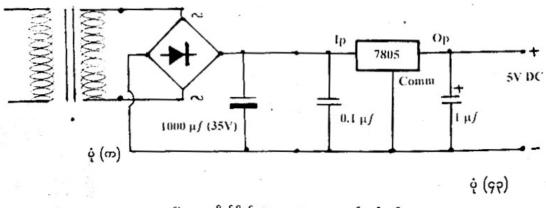
 $R_{2} = (\frac{9}{5} - 1)300$

= 240 Ω တပ်ရမယ်။


240 Ω ဝယ်မရရင်၊ ဝယ်လို့ရတဲ့ ရီစစ္စတာတွေကို စီးရီးလုပ်ပြီး တပ်ရမယ်။ V out (Reg) = Vout Regulator ကို ဆိုလိုပါတယ်။

_

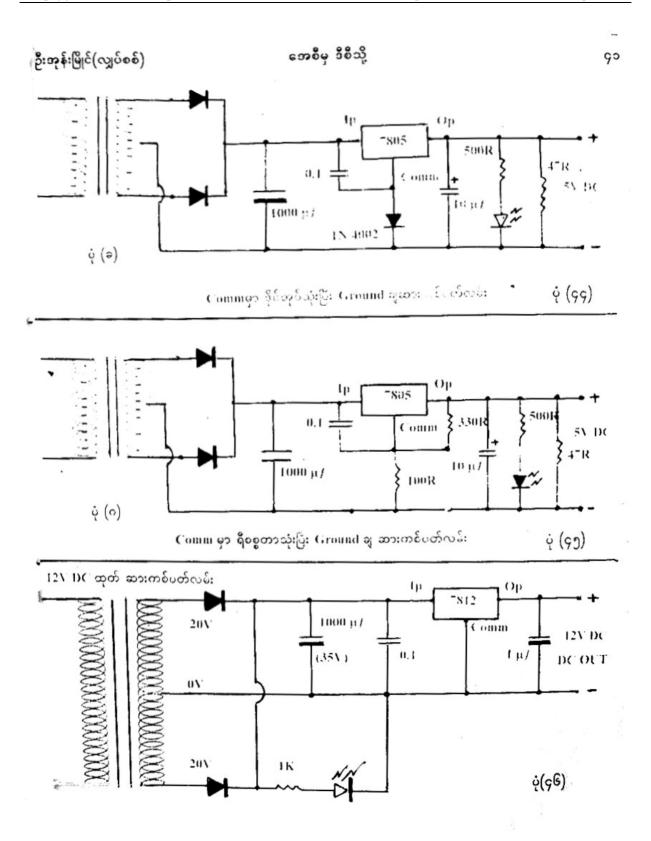
96

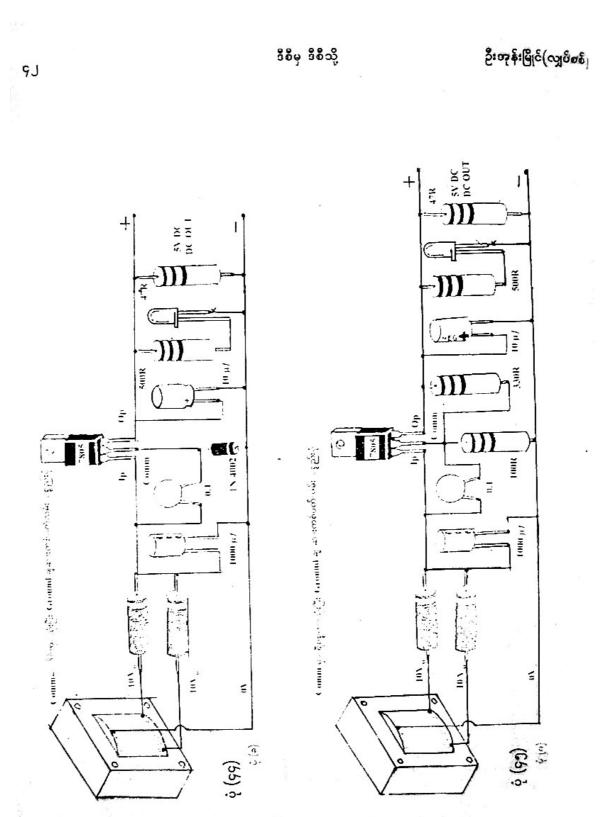


စောစီမှ ဒီစီသို့

မှတ်ချက်

I.C 78L05 ဖြစ်စေ၊ IC 78L12 ဖြစ်စေ၊ IC 78L24 ဖြစ်စေ၊ "L" ခံထားရင် Volt ကတော့ ဖော်ပြခဲ့သလို၊ 5 Volt. I2 Volt. 24 Volt IC တွေ ဖြစ်တယ်။ ဒါပေမယ့် လျှပ်စီးကြောင်းက 100 MA (၁၀၀ မီလီအင်ပီယာ)အထိသာ အသုံးပြုနိုင် တယ်။



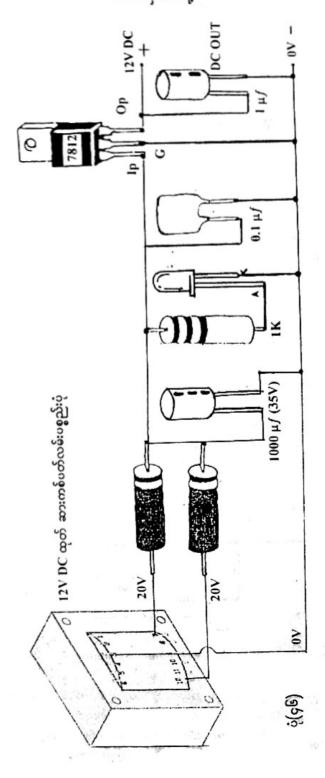


DC OUT + SV DC do 1 m 0 7805 B 5 0.1 µ/ (V2E) /4 0001 Comm တိုက်ရိုက် Ground ချ ဆားကစ်ပတ်လမ်း ပစ္စည်းပုံ 12 V 2 0 0 ς (ω) ų (99)

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

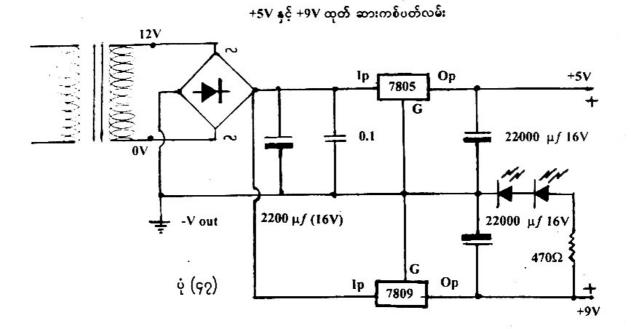
For Knowledge & Educational Purposes

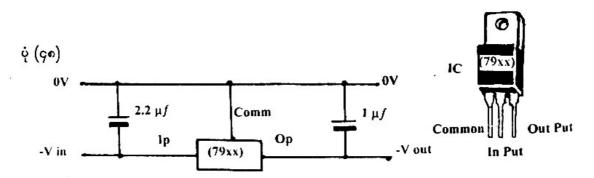

223

http://www.khtnetpc.webs.com

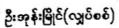
.

ဦးအုန်းမြိုင်(လျှပ်စစ်)

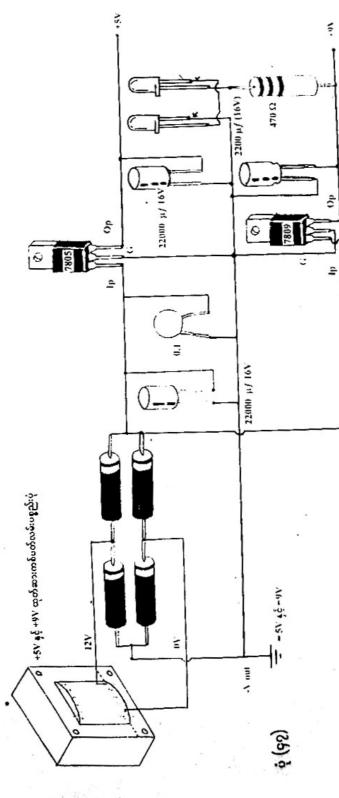

အေစီမှ စီစီသို့


ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

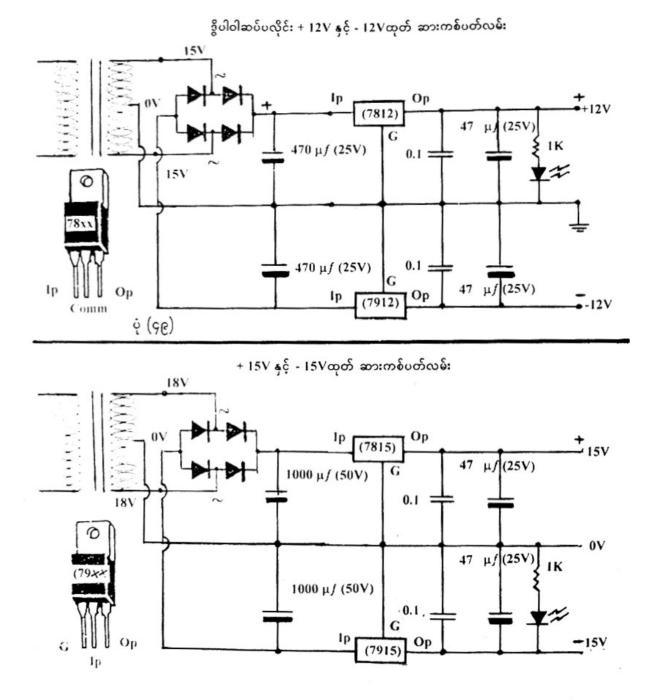

ပုံသေ၊ အနုတ် ဗို့အားထိန်းပတ်လမ်း Fixed Negative Voltage Regulator

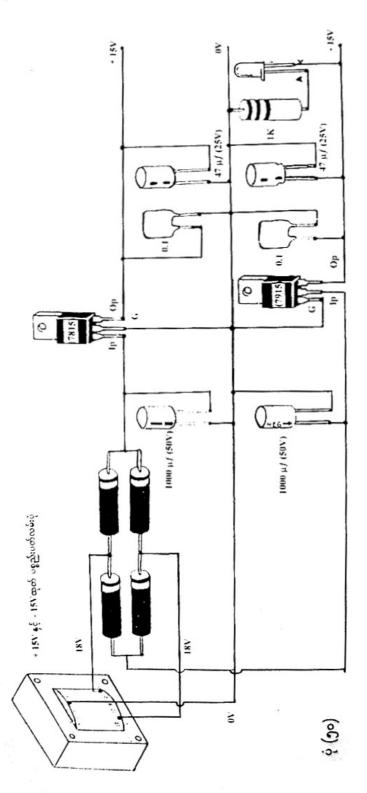
ပါဝင်တဲ့ IC နံပါတ်က IC 79xx စီးရီးပဲ ဖြစ်တယ်။ IC 7805 မှ IC 7824 အထိ ရှိသလို ယခု IC 7905 မှ IC 7924 အထိ ရှိတယ်။ IC 79xx ဟာလဲ IC 78xx လိုပဲ၊ Volt ကို တင်လို့ရတယ်။



ရွိပါဝါဆပ်ပလိုင်း ဗို့အားထိန်းပတ်လမ်းများ Dual-Power Supply-Regulator

ဗို့အား ပမာဏတူညီကြတယ်။ ဒါပေမယ့် လက္ခဏာ မတူကြတဲ့ ဗို့အား နှစ်မျိုးကို ထုတ်ပေးတဲ့ ပါဝါဆပ်ပလိုင်း ဖြစ်လို့ ဒွိပါဝါဆပ်ပလိုင်းလို့ ကင်ပွန်းတပ်လိုက်ပါတယ်။ အသုံးပြုတဲ့ အော့(၀်)အင်အိုင်စီ OP amp IC (Operation-Amplifier-Intergrated-Circuit)ဟာ ± 5V မှ ± 18 V အတွင်း ကောင်းစွာ အလုပ်လုပ်ကြတဲ့ အိုင်စီတွေ ဖြစ်တယ်။ အများဆုံး အသုံးပြုကြတဲ့ နေရာက ပရိအင်ပလီဖိုင်ယာ (Pre Amplifier) တုန်းကွန်ထရိုးဆားကစ် (Tone-Contro) Circuit) :စီကွေလိုက်ဇာ Equalizer ဆားကစ်တွေမှာ သုံးကြတယ်။ အသုံးပြုထားတဲ့ ဆားကစ်တွေကို လေ့လာကြည့်ရအောင်။




ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

રં (૧૦)

အေစီမှ ဒီစီသို့

ဂီစီမှ ဒီစီသို့

အေစီလျှပ်စစ်က ဒီစီပြောင်းလဲကြတဲ့အခါ ဒီစီစစ်စစ်ရအောင် လုပ်နိုင်ကြလို့ ကျေနပ်ကြမှာပါ။ ကိုယ်လိုချ<mark>င်တဲ့</mark> ဗို့ကိုအခြေခံပြီး ထရန်စစ္စဖော်မာ၊ အိုင်စီ ဝယ်ပြီး ဆားကစ်အတိုင်း ဘည်ဆောက်ကြမယ်ဆိုရင် ဒီစီရပါပြီ။ ဒါပေမဲ့ စိတ်တို<mark>င်းကျ</mark> မဖြစ်သေးဘူး။ ဘာဖြစ်လို့လဲ။

ဒီစီ 9 Volt လိုချင်ရင် IC 7809 ကိုဝယ်၊ ထရန်စစ္စဖော်မာဝယ်၊ ဆားကစ်အတိုင်း တည်ဆောက်၊ DC 9 Volt ရပြီ။ တစ်ခါ ဒီစီ 12 Voltလိုချင်ရင် IC 7812 ကိုဝယ်၊ ထရန်စဖော်မာကိုဝယ်၊ ဆားကစ်အတိုင်း တည်ဆောက်၊ ဒီစီ 12Volt ရပြီ။ လိုချင်တဲ့ဗို့တွေကို တစ်ခုချင်းတည်ဆောက်ကြရတယ် မဟုတ်လား။

ကိုယ့်စီမှာရှိနေတဲ့ မီနီကက်ဆက်ကိုလည်း ဒီစီ 3 Vol၊သုံးချင်တယ်။ အိမ်မှာရှိတဲ့ ကက်ဆက်အကြီးကိုလည်း ဒီစီ 6 Voltနဲ့ ဆက်သွယ်ချင်တယ်။ L.E.D မီးပြေးပတ်လမ်းတစ်ခုမှာလည်း ဒီစီ I2 Vol၊ နဲ့ လက်တွေ့စမ်းသပ်ချင်တယ်။ ဒါဆိုရင် အဒပ်တာသုံးလုံး တည်ဆောက်ထားရတော့မယ်။ ငွေကုန်ကြေးကျများနေမယ်။

ဈေးကွက်မှာရှိတဲ့ အဒပ်တာ (အေစီမှ ဒီစီ)ပြောင်းလို့ရတဲ့ ပစ္စည်းတွေကလည်း 3 Volt. 9 Volt. 12 Volt ပြောင်းလို့ ရပေမယ့် အဝင်အေစီဗို့ကျရင် အထွက်ဒီစီလည်း ဗို့ကျသွားပြန်တယ်။ တည်ငြိမ်တဲ့ဗို့အားကို မရနိုင်ပြန်ဘူး။

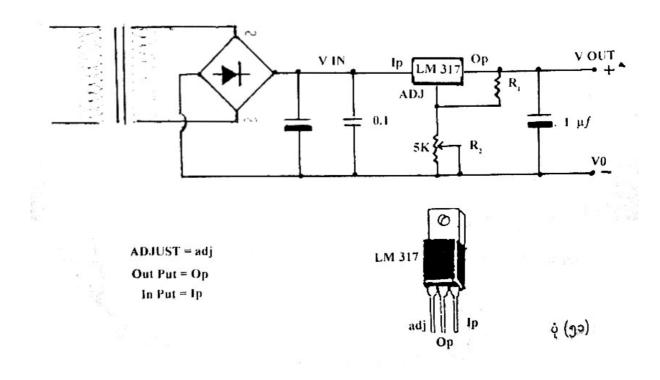
လိုချင်တာက ဗို့လည်းတည်ငြိမ်ရမယ်။ လျှပ်စီးကြောင်းလည်း အဆွဲခံနိုင်ရည် ရှိရမယ်။ ဒီစီဗို့ကိုလည်း စိတ်ကြိုက်ထုတ်ယူနိုင်ရမယ်။ အဲဒီလို အီလက်ထရွန်းနစ်ပစ္စည်းလေးတစ်ခုရှိရင် ဘယ်လောက်ကောင်းမလဲ။

စိတ်ကူးယဉ်မှုကို အကောင်အထည်ဖော်ပေးလိုက်တဲ့ အီလက်ထရွန်းနစ်ပစ္စည်းတစ်ခု ပေါ် လာပြန်တယ်။ အဲဒါကတော့ LM 317 အိုင်စီပဲ။ ဒါဆိုရင် အိုင်စီ LM 317 ကို လေ့လာကြည့်ရအောင်။

အောစီမှ ဒီစီသို့

ခိုန်ညှိ ဗို့အားထိန်းပတ်လမ်း Adjustable Voltage Regulator

အိုင်စီ L.M 317 ဟာ အပေါင်းဗို့အားကို မိမိစိတ်ကြိုက်ပြောင်းပေးနိုင်တဲ့ အိုင်စီဖြစ်တယ်။ အထွက် လျှပ်စီးကြောင်းလဲ 1.5 Ampere အထိ အဆွဲခံပါတယ်။


C, ကို Power Filter Condenser နဲ့ (၃)လက်မထက်ဝေးမယ်ဆိုရင် ထည့်ပေးရမယ်။ R, ကို ပုံသေအနေနဲ့ 240Ω သုံးနိုင်ပါတယ်။ R₂ ကို ပုံသေထားလို့လဲရတယ်။ ဒါပေမယ့် လိုအပ်သလို ဗို့လိုချင်ရင်တော့ 5K Volume ဖြစ်ဖြစ်၊ Pre ဖြစ်ဖြစ် သုံးနိုင်တယ်။ အနိမ့်ဆုံးဗို့အား 1.25 Volt အထိ ထုတ်ပေးနိုင်တဲ့ အိုင်စီဖြစ်တာကြောင့်

Vout = Vout (Reg)
$$(1 + \frac{R_2}{R_1})$$

= 1.25 x $(1 + \frac{5 K}{0.24 K})$
= 27.3 Vout

= 27 Volt အနီးစပ်ဆုံး

R ကို ပြောင်းပေးမယ်ဆိုရင် အထွက်ဒီစီ 1.25 Volt မှ 27 Volt အတွင်း စိတ်ကြိုက်ပြောင်းပေးနိုင်ပါတယ်။ အဝင်ဗို့အားတော့ 28 Volt ဒီစီထက်ကြီးရန် လိုပါတယ်။

အကယ်၍ 25 Volt ဒီစီထက် ပိုလိုချင်တယ်ဆိုရင် အဝင်ဗို့အားကို 40 Volt ဒီစီ အထိ တင်ပေးထားရမယ်။

90

ງ໐

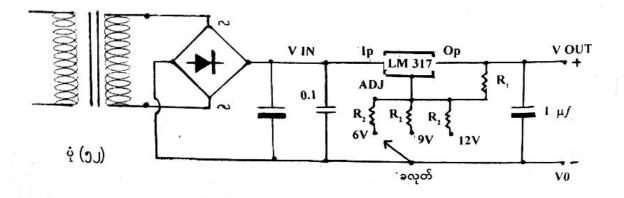
ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

LM 317 နဲ့ ပုံသေ ဒီစီ ဗို့ထုတ်ယူမယ်။

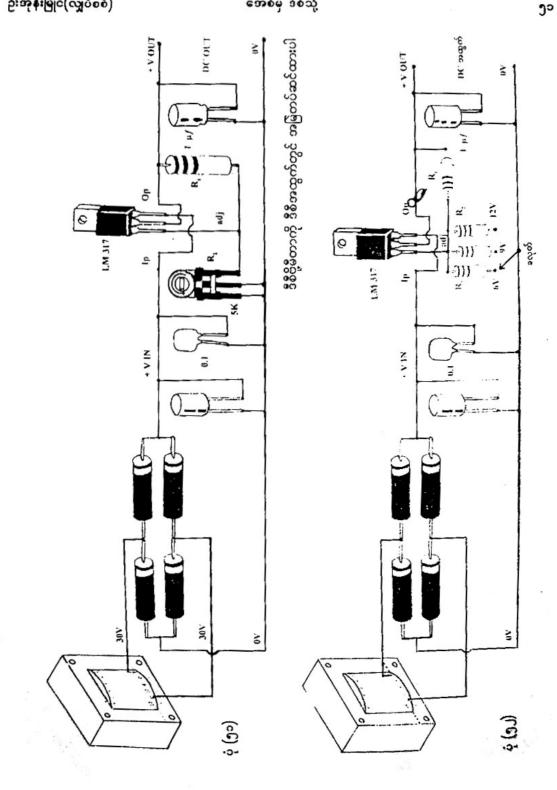
IC LM 317 ကို အသုံးပြုပြီး 38 6 Volt, 9 Volt, 12 Volt ကို ပုံသေ တစ်ခါထဲလဲ ထုတ်လို့ရပါတယ်။ ခလုတ်တစ်လုံး တော့ လိုမယ်။ လိုအပ်တဲ့ Volt လို ရွှေ့လို့ရအောင်။

 $R_2 = (\frac{V_0}{1.25} - 1) R_1$ $R_1 = 240 \Omega$ ပံံသေ Vout = 6 Volt လိုချင်ပါက $R_2 = (\frac{6}{1.25} - 1) 240$ $= 912 \Omega$ $R_2 912 \Omega$ အတိအကျ ထည့်ရမယ်။ မတိကျရင် အထွက်ဗို့ တိကျမှာ မဟုတ်ဘူး။ 912 အုမ်း = (820 Ω + 82 Ω + 10 Ω) စီးရီးလုပ်ပေးရမယ်။ Vout = 9 Volt လိုချင်ပါက $R_2 = (\frac{V_0}{1.25} - 1) R_1$


$$= (\frac{9_0}{1.25} - 1) 240$$

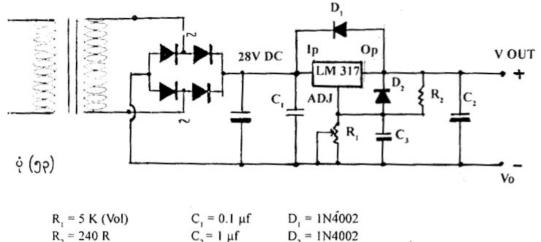
Vout = 12 Volt လိုချင်ပါက

R


$$= \left(\frac{V_0}{1.25} - 1\right) R_1$$
$$= \left(\frac{12}{1.25} - 1\right) 240$$
$$= 2064 \Omega$$

2.064 KΩ

အေစီမှ ဒီစီသို့

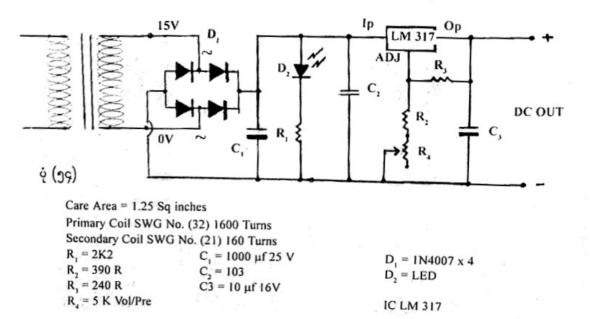


---JJ

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

IC LM 317 ဆားကစ်ပတ်လမ်းများ (၁)


 $C_2 = 1 \, \mu f$ $D_{2} = 1N4002$

 $C_{1} = 10 \, \mu f$ V input = 28 Volt D.C

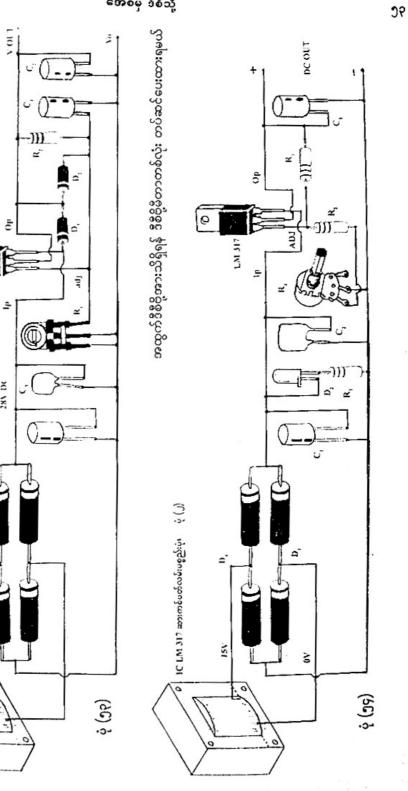
V out = (1.25 V - 25 V) DC at 1.5 Amp

ခိုင်အုပ် D, D, နဲ့ ကွန်ဒင်ဆာ C, တို့ကို ထည့်သွင်းထားလို့ အဝင်အထွက် အငုတ်များ ရှော့ (ခ) ဖြစ်မယ်ဆိုရင်၊ ပတ်လမ်းမပျက်စီးရအောင် ကာကွယ်ပေးထားပါတယ်။

IC LM 317 ဆားကစ်ပတ်လမ်းများ (၂)

(c) ș

iCLM 317 ဆားကစ်ပတ်လမ်းပစ္စည်းပုံ


1.M.M.1

M DG VS2

0

ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

ပြန်ကြားစာ

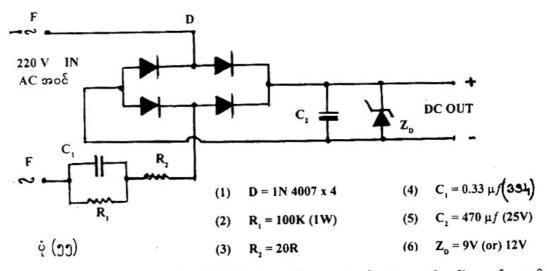
စာရေးသူထံ လျှပ်စစ်ဝါသနာရှင်များ မိမိသိလိုသော အကြောင်းအရာများ မေးမြန်းခြင်းကို ကျေးဇူးတင်စွာနဲ့ လက်ခံရရှိပါတယ်။ တစ်ဦးခြင်း မရှင်းပြနိုင်တာကို ခွင့်လွှတ်စေချင်ပါတယ်။ သိလိုသောအကြောင်းအရာများကို ဉာဏ်စွမ်း ရှိသမျှ စာပေနဲ့ပဲ ပြန်လည်ဖြေကြားပေးပို့လိုက်ပါတယ်။

> ကေးဇူးတင်စွာဖြင့် ဦးအုန်းမြိုင် (လျှပ်စစ်)

၁။ ဇိနာဒိုင်အုပ် 6.2 V ဝယ်ပါတယ်။ ဖန်သားလိုအနီရောင်ပေါ်မှာ 6.2 Vရိုက်နှိပ်ထားတာတွေ့ရပါတယ်။ နောက်တစ်ကြိမ်သွားဝယ်တယ်။ မီးခိုးရောင်ဇိနာဖြစ်နေတယ်။ နံပါတ်ရေးသားထားတယ်။ ဝို့ရေးသားတာမတွေ့ရဘူး၊ ကွာခြားမှုကိုသိလိုပါတယ်ခင်ဗျား။

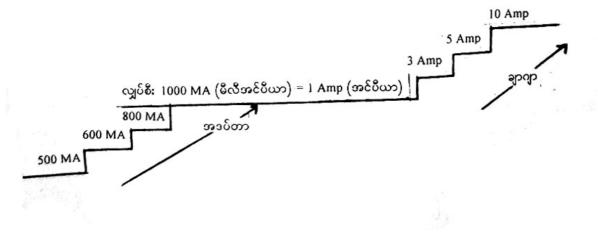
ဇီနာဒိုင်အုပ်မှာ သတ်မှတ်ဗို့အားကို ကိုယ်ထည်ပေါ်မှာ ရေးမှတ်ထားပါတယ် မီးခိုးရောင်ဇီနာပေါ်မှာ -

4 V 7 တွေ့ရမယ်။ 4.7 Volt လို့ ဆိုလိုပါတယ်။ 4.7 4B7 п R 4.7 Z47 R Z 5 6 5.6 ш B 5.1 Z 5 1 1 U) အဝါရောင်အကြည် ဇီနာကိုယ်ထည်ပေါ်မှာ -IN 4732 A တွေ့ရမယ်။ 4.7 V ကို ဆိုလိုပါတယ်။ IN 4733 A a 5.1 V 1N 4737 A 7.5 V Ħ u IN 4753 A H 33 V H IN 4728 A 3.3 V Ħ H IN 4735 A 6.2 V 11 H IN 4742 A 11 12V H


ကိန်းဂဏန်းတွေဟာ ဗို့အားနဲ့ ဆက်သွယ်မှုရှိပုံကို ဇိနာဒေတာစာအုပ်မှာ ကြည့်ရှုရပါတယ်။

ဦးအုန်းမြိုင်(လျှပ်စစ်) အေစီမှ ဒီစီသို့

၂။ အေစီမှ ဒီစီပြောင်းရင် မိန်းထရန်စဖော်မာတစ်လုံးရှိမှ ဖြစ်တယ်လို့ သိရပါတယ်။ တချို့က ဇာရန်စဖော်မာ မပါပဲ ဒီစီပြောင်းလို့ရတယ်လို့ ပြောကြပြန်တယ်။ စဉ်းစားရခက်နေပါတယ်၊ ပြန်ကြားပေးပါခင်ဗျား-


ပေးထားတဲ့ ဆားကစ်ပတ်လမ်းပုံက အေစီမှ ဒီစီပြောင်းပေးတဲ့ ဆားကစ်ဖြစ်တယ်။ ထရန်စဖော်မာမပါဘူး။ ဇီနာနဲ့ ထိန်းထားပေးတယ်။ အဝင်ပုံမှန် 220 Volt ရှိရမယ်။ ဇီနာ 9Vကိုသုံးရင် အထွက်ဒီစီ 9V ရမယ်။ ဇီနာ 12V ကိုသုံးရင် အထွက်ဒီစီ 12V ရမယ်။

ဒါပေမဲ့ Watt (၀ပ်)နည်းတဲ့ ဆားကစ်ပတ်လမ်းမှာ သုံးရမယ်။ L.E.D ဘုရားမီးပြေးဆားကစ်၊ ညအိပ်မီး၊ အိပ်ဆောင်ရေဒီယို စတဲ့ပစ္စည်းတွေမှာ သုံးနိုင်ပါတယ်။

(၃) အဒပ်တာကလည်း အေစီမှ ဒီစီပြောင်းသုံးရတယ်။ ချာဂျာ(ဘက်ထရီအားသွင်းစက်)ကလည်း အေစီမှ ဒီစီ ပြောင်းသုံးရတယ်။ ဘယ်လိုကွာခြားမှုရှိတယ်ဆိုတာ သိချင်ပါတယ်။

အဒပ်တာနဲ့ ချာဂျာတို့ဟာ အေစီမှ ဒီစီပြောင်းပြီးသုံးကြရတယ်။ ဘယ်လိုကွာခြားမှုတွေရှိတယ်ဆိုတာ လျှပ်စစ်စီးကြောင်းနဲ့ယှဉ်ပြီး ပြောရရင်-

30

J6

အဒပ်ဘာတွေရဲ့ လျှပ်စစ်စီးကြောင်းကို 1Amp သို့မဟုတ် 1.5 Amp အထိသာ တည်ဆောက်ကြပါတယ်။ အများဆုံး မီလီအင်ပီယာတွေနဲ့ တည်ဆောက်ကြတယ်။ ဓာတ်ခဲရဲ့ လျှပ်စီးအင်အားလောက်ကိုပဲ လိုချင်တယ် မဟုတ်လား။

ဒီစီမှ ဒီစီသို့

ချာဂျာကတော့ ဘက်ထရီအားပြည့်ရန် အဓိကပဲ။ လျှပ်စီးများများရအောင် တည်ဆောက်ကြရတယ်။ ဘယ်ထရီအိုးတွေကို 3 Amp 10 Amp အားသွင်းနိုင်အောင် တည်ဆောက်ကြတယ်။ အဒပ်တာနဲ့ ချာဂျာကိုယှဉ်ပြီး ကြည့်မယ်ဆိုရင် -

အခပ်တာ

ချာဂျာ

- ဗို့အားနိမ့်ထရန်စဖော်မာကိုသုံးတယ်၊ (0)
- အများအားဖြင့် လျှပ်စီးမီလီအင်ပီယာကို (J) သုံးတယ်၊
- စီလီကွန်ဒိုင်အုပ်ကို သုံးတယ်၊ (၃)
- ဒီစီသန့်အောင် ကွန်ဒင်ဆာမရှိမဖြစ် (9) သုံးရတယ်။

- **ဝို့အားနိမ့်ထရန်စဖော်မာကိုသုံးတ**ယ်၊ (ɔ)
- လျှပ်စီးတစ်အင်ပီယာအထက်သုံးတယ်၊ (J)
- စီလီကွန်မက်တဲလ်ဒိုင်အုပ်ကို အပူခံ (၃) သတ္တုပြားနဲ့ တွဲသုံးရတယ်။
- ဒီစီဖြစ်ရင် လုံလောက်ပါပြီ၊ ကွန်ဒင်ဆာ (9) ထည့်စရာ မလိုအပ်ပါ။
- ဝါယာကြိုးဂိတ်နံပါတ် ၂၁မှ ၄၆အထိ (9) သုံးကြတယ်။
- ' (၅) ဝါယာကြိုးဂိတ်နံပါတ် ၁၄မှ ၂၂အထိ အသုံး ပြုကြတယ်။

(၄) မက်တဲလ်ဒိုင်အုပ်ကိုထိန်းရန် အပ္စစုပ်ပြား Heat Sink တပ်ရင် သတ္တုပြားအထူအပါး ရွေးစရာလိုပါသလား၊ ကြိုက်နှစ်သက်ရာ သုံးနိုင်ပါသလား၊ သိချင်ပါတယ်။

ချာဂျာတွေ တည်ဆောက်ကြတဲ့အခါ လျှပ်စီးကြောင်းများလာရင် ဒိုင်အုပ်တွေဟာ အပူလွန်ကဲမှုကို ခံရပါတယ်။ ကာကွယ်ပေးထားတဲ့အနေနဲ့ အပူခံပြား Heat Sink ပေါ်မှာ နေရာချပေးရတယ်။

ဒိုင်အုပ်ရဲ့ အင်ပီယာကိုကြည့်ပြီး အပူခံပြားကို ရွေးချယ်ကြတယ်။ 1Amp မှ 6 Amp ဆိုရင် သတ္တုပြား "နှစ်ပြားထု"ဆို လုံလောက်ပါတယ်။ 6 Amp အထက်ဆိုရင် "တစ်မူး"ထူနဲ့ "သုံးမူး"ထူရှိတဲ့ အပူခံသတ္တုပြားကို သုံးကြပါတယ်။

အချို့က အပူစုပ်ပြားပေါ် မှာ အပူပုံ့လွင့်မှုကို အထောက်အကူပြုတဲ့ အတက်များပါရှိတဲ့ သတ္တပြားကို သုံးကြတယ်။

(၅) ဆရာစာအုပ်ရဲ့ သင်္ချာပိုင်းဆိုင်ရာတွက်ချက်မှုတွေမှာ "ဆယ်ပြား" "တစ်မူး" "ငါးပဲ "စသည်ဖြင့် သုံးနှုန်းထားသလို သင်္ချာအပိုင်းဂဏန်းတွေလည်း ဖော်ပြထားပါတယ်။ ကိုးပြားဝယ်ရင် တိုင်းတာရမယ့် ပေတံအမျိုးအစားကို ဖော်ပြပါ။ တိုင်းတာနည်းစနစ်ကို ကျေးဇူးပြု၍ ရှင်းပြပါ။

ပေတံနဲ့တိုင်းတာနည်း နှစ်မျိုးသုံးပါတယ်။ တစ်မျိုးက ကွန်ပါဗူးထဲမှာပါတဲ့ ပေတံနဲ့ တိုင်းတာတယ်။ တချို့က ဗြိတိသျှငွေကြေးစနစ်ကို အခြေခံတဲ့ တိုင်းတာနည်းဖြစ်တယ်။

ပေတံပေါ်မှာ ရေးသားထားတဲ့ စာကို သတိပြုရမယ်။

"TENTH" "EIGHT" "SIXTEEN" "CM" တချို့ပေတံမှာက "32 NDS" "16 THS" "8 THS"လို့ ဖော်ပြထားတယ်။ "TENTH" ရေးသားထားတဲ့ပေတံက ၁၀စိတ် စိတ်ထားတဲ့ပေတံဖြစ်တယ်။

ဦးအုန်းမြိုင်(လျှပ်စစ်) အေစီမှ ဒီစီသို့

ကွန်ပါဗူးထဲက ပေတံပေါ့။ တစ်လက်မမှာ ၁၀စိတ် စိတ်ထားလို့ တစ်စိတ်က 0.1" ရှိတယ်။ အတိုင်းအတာကိုလည်း ဒသမနဲ့ ဖော်ပြရမယ်။

ဥပမာ- 1.1" 2.5" စသဖြင့်။

"CM" လို့ဖော်ပြထားတဲ့ ပေတံက စင်တီမီတာနဲ့ တိုင်းရတယ်။ မက်ထရစ်စနစ် တိုင်းတာနည်းဖြစ်တယ်။ ကျွန်တာတွေက ဗြိတိသျှငွေကြေးစနစ်ကို အခြေခံထားပြီး တိုင်းတာနည်းဖြစ်တယ်။

"64 THS" ဖော်ပြထားတဲ့ ပေတံက-

တစ်ကျပ် သို့မဟုတ် တစ်လက်မကို ၆၄စိတ် စိတ်ထားတယ်။ ၆၄စိတ် စိတ်ထားလို့ ၆၄ပြားလို့ ခေါ် တယ်။ တစ်စိတ်ကို တစ်ပြားသတ်မှတ်ပါတယ်။

"16 THS" ဖော်ပြထားတဲ့ ပေတံက -

တစ်ကျပ် သို့မဟုတ် တစ်လက်မကို ၁၆စိတ် စိတ်ထားတယ်။ ၁၆စိတ် စိတ်လို့ ၁၆ပဲလို့ ခေါ် တယ်။ တစ်စိတ်ကို တစ်ပဲသတ်မှတ်ပါတယ်။

"8 THS" ဖော်ပြထားတဲ့ ပေတံက-

တစ်ကျပ် သို့မဟုတ် တစ်လက်မကို ၈စိတ် စိတ်ထားတယ်။ ၈စိတ် စိတ်ထားလို့ တစ်စိတ်ကို "တစ်မူး"လို့ ခေါ် တယ်။ ပုံအရ (၃။)

							· · ·
1							
1							
	1						· · ·
	5	တစ်မတ်	သံးမး	J		သုံးမတ် တစ်ကျပ်မူးတင်း	ကစ်ကယ်
	တစ်မူး	0,0600	20:0:	cl:e:	69,006	2:00,0000000000	0,000,00
			L 1L		U		

တစ်ကျပ်မှူးတင်းလို့ခေါ် ရတာက တစ်စိတ်မှာ တစ်မူးရှိလို့ တစ်မူးလိုသေးတယ်လို့ ခေါ် ဆိုခြင်းဖြစ်တယ်။

နာရီရဲ့အချိန်ကို ၈နာရီမတ်တင်း၊ ငါးနာရီမတ်တင်း၊ ပြောကြတာ ကြားဖူးမှာပေါ့။ "မတ်တင်း" ဘာဖြစ်လို့ ပြောကြတာလဲ။

တစ်ကျပ်မှာ လေးမတ်ရှိတယ်မဟုတ်လား။ ၁၂မှ ၃ဟာ ၁၅မိနစ်ရှိတယ်။ ၃ မှ ၆ဟာ ၁၅မိနစ်၊ ၆မှ ၉ဟာ ၁၅မိနစ်၊ ၉ မှ ၁၂ဟာ ၁၅မိနစ်ရှိတယ်။ ၁နာရီကို လေးစိတ်စိတ်ပြီး တစ်စိတ်ကို တစ်မတ်လို့ယူတယ်။ ၁၂နာရီထိုးရန် ၁၅မိနစ်ကို "မတ်တင်း"လို့ ခေါ်ကြတယ်။ အဓိပ္ပာယ်က တစ်မတ်လိုသေးတယ်။ ၁၅မိနစ် လိုသေးတယ်လို့ ပြောပြချင်ကြတယ်။

အတိုင်းအတာတစ်ခုမှာလည်း တစ်မူးလိုသေးလို့ "မူးတင်း"လို့ ခေါ်ကြတယ်။ အင်္ကျီချုပ်သမားများရဲ့ ပေကြိုးဟာ ၈စိတ် စိတ်ထားတဲ့ပေတံဖြစ်တယ်။

့သင်္ချာပိုင်းဆိုင်ရာနဲ့ လေ့လာမယ်ဆိုရင်-တစ်မူးဟာ ၈ပုံ ၁ပုံဖြစ်လို့ '/့"လို့ရေးပါတယ်။ တစ်မတ်ဟာ ၈ပုံ၂ပုံဖြစ်လို့ ²/့"⁼¹/့"လို့ ရေးပါတယ်။ သုံးမူးဟာ ၈ပုံ ၃ပုံဖြစ်လို့ ³/့"လို့ရေးပါတယ်။ 35

ງຄ

ဒီစီမှ ဒီစီသို့

ငါးမူးဟာ ၈ပုံ ၄ပုံဖြစ်လို့ 🖓 "=½"လို့ရေးပါတယ်။ ခြောက်မူးဟာ စပံ ၅ပုံဖြစ်လို့ '/ "လို့ရေးပါတယ်။ သံးမတ်ဟာ စပံ့၆ပုံဖြစ်လို့ ''ႂ''='/၂''လို့ရေးပါတယ်။ တစ်လက်မမူးတင်း ၈ပုံ ၇ပုံဖြစ်လို့ 🖓 "လို့ရေးပါတယ်။ "16 THS" နဲ့ "64 THS" ပေတံတွေကို လေ့လာရအောင်။

လက်သမားဆရာတွေသုံးနေတဲ့ သစ်သားခေါက်ပေတံဟာ တစ်ဖက်မှာ ၈စိတ် စိတ်ထားတယ်။ တစ်ဖက်မှာ ၁၆စိတ် စိတ်ထားပါတယ်။ ၁၆စိတ်ဖြစ်လို့ ၁၆ပဲစိတ်တဲ့ ပေတံဖြစ်တယ်။

ခလုတ်နှိပ်ပြီး ဆွဲထုတ်ရတဲ့ သံပေကြိုးခွေမှာ ၁၆ပဲစိတ်ထားပြီး ပြားဂဏန်းလည်း အနည်းငယ်စိတ်ထားပါတယ်။ သံစတီးပေတံတွေမှာ ပြားဂဏန်းစိတ်ထားပေးပါတယ်။ တွင်ခုံဆရာတွေရဲ့ အတိုင်းအတာဟာ ပြားဂဏန်းလည်း အလွန်မှ အရေးကြီးပါတယ်။ တစ်ပြား နှစ်ပြားကအစ အမှားမခံပါ။

															696	yp:
	ာမ် ကိုးရမ် ကို) 00 00	>9 29	90 20	JJ	Je 2	99 90	29 0	- 6 - 0	ا جا ع	96 90)°)°	۲۹ ور م] ງາ ອ	 ნე ე ^ბ	680
3	တ	စ်မူ:	တစ်	မတ်	عزد	ų:	ી	ų:	- 67	က်မူး	သုံး	မတ်	84:	တင်း	3	1-

ပုံမှာပြထားသလို တစ်လက်မအတွင်းမှာ ပဲနဲ့ပြားစိတ်ထားပုံကို လေ့လာကြည့်ရင် သဘောပေါက်လွယ်မှာပါ။ ၁ပဲမှာ ၄ပြားစိတ်ထားတယ်။ ၂ပဲမှာ ၈ပြား(တစ်မူး) စိတ်ထားတာ တွေ့ရမယ်။ သင်္ချာအပိုင်းဂဏန်းတွေကိုမြင်လျှင်လည်း အခေါ် အဝေါ် နားလည်ဖို့ အရေးကြီးပါတယ်။

- (c)
- (_) $\frac{3"}{32} \times \frac{2"}{2} = \frac{6"}{64}$

ပိုင်းခြေမှာ ၆၄ပြားဖြစ်လို့ ပိုင်းဝေကို ၆ပြားလို့ ခေါ် ရမယ်။ ပေတံမှာကြည့်ရင် ၆ပြားကို ၁ပဲ ၂ပြားလို့ ခေါ် လို့ရပါတယ်။

(2) $\frac{1}{8}$ $\frac{1}{8} \times \frac{2}{2} = \frac{2}{16} (j\dot{v})$

ဦးအုန်းမြိုင်(လျှပ်စစ်)

အေစီမှ ဒီစီသို့

(၄)
$$\frac{5"}{32}$$

 $\frac{5"}{32} \times \frac{2"}{2} = \frac{10"}{64}$ (၁၀ပြား) (တစ်မှူး ၂ပြား)

လေ့ကျင့်ရအောင်

(6)
$$\frac{1}{4}$$
 (2) $\frac{5}{16}$ (n) $\frac{3}{8}$ (e) $\frac{7}{16}$ (so) $\frac{1}{2}$
(so) $\frac{9}{16}$ (sj) $\frac{5}{8}$ (sp) $\frac{11}{16}$ (sq) $\frac{3}{4}$ (sj) $\frac{13}{16}$
(s6) $\frac{7}{8}$

(၆) ဆားကစ်ပတ်လမ်းတွေမှာ H 1061နေရာမှာ C 1383 သုံးကြည့်တယ်။ C 945 လည်း သုံးကြည့်တယ်။ NPN ထရန်စစ္စတာတွေပဲဖြစ်တယ်။ ဆားကစ်ပတ်လမ်း ပုံမှန်အလုပ်လုပ်ပါတယ်။ NPN တွေ အတူတူပဲ။ ဘာဖြစ်လို့ နံပါတ်တွေနဲ့ ခွဲခြားထားတယ်ဆိုတာ သိချင်ပါတယ်။

ထရန်စစ္စတာတွေမှာ-

(c) Small Signal Transistor &

(၂) Large Signal Transistor ဆိုပြီး ခွဲခြားထားသလို Large Signal Transistor မှာ တစ်ခါ

(က) Medium Power Transistor နဲ့

(ခ) Power Transistorဆိုပြီး ခွဲခြားထားပြန်တယ်။

ထရန်စစ္စတာတွေရဲ့ ကော်လိပ်တာလျှပ်စီးကြောင်း Collector Current ကို အခြေခံထားပြီး ပြောရမယ် ဆိုရင်-

(၁) Small Signal Transistorမှာဆိုရင် Collector Current One Ampere (၁အင်ပီယာ)ထက် ငယ်သလို၊ ဝပ်အားပမာဏာလည်း ငယ်တဲ့ထရန်စစ္စတာတွေဖြစ်တယ်။

ဥပမာ - BC 107 တွင် Ic Max = 0.1 Amp (0.36 Watt)

A 564 တွင် Ic Max = 0.1 Amp (0.25 Watt)

C 945 og& Ic Max = 0.1 Amp (0.25 Watt)

()

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)

Large Signal Transistor မှာပါဝင်တဲ့ Medium Power Transistor တွေကြတော့ One Amp ထက်ကြီးတယ်။ Watt လည်း ဝိုလာတယ်။

ဥပမာ - C 1383 တွင် Ic = [Amp (0.75 Watt)

C 1096 တွင် Ic = 2 Amp (10 Watt)

C 1061 တွင် Ic = 3 Amp (25 Watt)

A 671 တွင် Ic= 3 Amp (25 Watt)

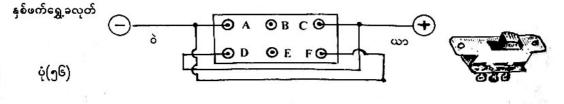
နောက်ဆုံး Power Transistor တွေကြတော့

2N 3055 တွင် le - 15 Amp (115 Watt)

MJ 2955 တွင် Ic = 15 Amp (115 Watt)

PNP တို့ NPN တို့ရဲ့ နံပါတ်တွေ ကွာခြားမှုဟာ Collector Current ကွာခြားမှုနဲ့ Wattကွာခြားမှု ရှိတယ်ဆိုတာ ဆိုပါရစေ။ အသုံးပြတဲ့ပတ်လမ်းပေါ် မူတည်ပြီး ထရန်စစ္စတာတွေရဲ့ ခံနိုင်ရည် ရွေးချယ်ပေးရတယ်ဆိုတာ မှတ်သားပေးရမယ်။

(၇) D.C ဂျက်ခေါင်းတွေမှာ (+) (-)အဖိုနဲ့အမ ပြောင်းရန် Polarity ခလုတ်ပါဝင်ပါတယ်။ အ<mark>တွင်းဆားကစ်</mark> ပတ်လမ်းကြိုးသွယ်မှုစနစ် သိချင်ပါတယ်။ ဖြေကြားပေးပါခင်ဗျာ။


ပြင်ပမှ ADAPTOR အဒပ်တာတွေဝယ်ရင် ဒီစီအထွက်ပိုင်းမှာ Polarity Switch ထည့်ပေးထားရတယ်။ ဒီစီအထွက်ခေါင်းမှာ အဖိုနဲ့အမ ပြောင်းလဲပေးရန်ဖြစ်တယ်။ အသုံးပြုတဲ့ အီလက်ထရွန်းနစ်ပစ္စည်းတွေကို ပြင်ပမှ ဒီစီပေးတဲ့အခါ လက်ခံတဲ့အထိုင်ဆော့ကက် တစ်ခုနဲ့တစ်ခု မတူညီကြဘူး။

တချို့ဒီစီဆော့ကက်အထိုင်ဟာ ပြင်ပအဖိုဖြစ်ခဲ့ရင် အတွင်းအလယ်က အမဖြစ်ရမယ်။ အကယ်၍ ပြင်ပ အမ ဖြစ်ခဲ့ရင် အတွင်းအလယ်က အဖိုဖြစ်ရမယ်။ မှားလို့မရဘူး။ ဒါကြောင့် လိုအပ်သလို ပြောင်းပေးနိုင်ရန်အတွက် Polarity ခလုတ်ထည့်ပေးထားတယ်။ အသုံးပြုတဲ့ခလုတ်က ဝဲယာရွှေ့လို့ရမယ်။ အငုတ် (၆)ငုတ်ပါရမယ်။

အငုတ်တွေကို နားမည်ပေးထားတယ် ABCDEF၊ **B**နဲ့ **E** အထွက်ပိုင်းဖြစ်တယ်။ ရက်တီဖိုင်ယာဆားကစ် ပတ်လမ်းက ထွက်လာတဲ့အဖိုကို C အငုတ်နဲ့ D အငုတ်မှာ ဆက်သွယ်ပေးရမယ်။ တဖန် ရက်တီဖိုင်ယာဆားကစ်ပတ်လမ်းက ထွက်လာတဲ့အမကို A အငုတ်နဲ့ F အငုတ်ကို ဆက်သွယ်ပေးရမယ်။

B နဲ့ E က DC ဂျက်ပင်ခေါင်း (DC Jack) နဲ့ ဆက်သွယ်ပေးရမယ်။ ပုံအရ ခလုတ်ကို ယာဘက်ရွှေ့ရင် B နဲ့ 🧲 ဆက်သွယ်မိသလို E နဲ့ F လည်း ဆက်သွယ်မိမယ်။ B ဟာ အဖိုငုတ်ဖြစ်လာပြီး E ဟာ အမငုတ်ဖြစ်လာပါတယ်။

ခလုတ်ကို ဝဲဘက်ရွှေ့လိုက်ရင် A နဲ့ B ဆက်သွယ်မိသလို၊ D နဲ့ E လည်း ဆက်သွယ်မိတယ်။ Bဟာ အမင့်အိ ဖြစ်လာပြီး E ဟာ အဖိုငုတ်ဖြစ်လာပါတယ်။ လက်တွေ့လုပ်ကိုင် ဆက်သွယ်ကြည့်ပါ။

အေစီမှ ဒီစီသို့

(၈) ကွန်ဒင်ဆာရဲ့ တန်ဖိုးကို (က) 10 n (ခ) 100 n (ဂ) 330 n (ယ) 1000 P တန်ဖိုးတွေကို µƒတန်ဖိုး မတွက်တတ်လို့ တွက်ပြပါ။

ကွန်ဒင်ဆာတွေကို µƒနဲ့ ဖော်ပြသလို၊ PFနဲ့လဲ ဖော်ပြတယ်။ "N" က NANO နေနွန်ဖဲရက်တန်ဖိုးဖြစ်တယ်။ ကွန်ဒင်ဆာရဲ့ ယူနစ်က -

l မိုက်ခရိုဖရက် (l Micro-Farad)	=	1 μ <i>f</i>
	=	$1 \text{ MF} = 10^{-6} \text{ F}$
1 ပီကိုဖရက် (1 Pico-Farad)	=	$I PF = 1 \mu\mu f$
	-	10 ⁻¹² F
l နေနွန်ဖရက် (l NANO-FARAD)	=	$1000 \text{ PF} = 10^{.9} \text{ F}$
ကွန်ဒင်ဆာရဲ့ တန်ဖိုးကို ဂရိသင်္ကေတ မြု	"μ"နဲ့	ဖော်ပြတယ်။ ယူမဟုတ်ဘူး။ "F"ကို FARADနဲ့ ဖော်ပြတယ်။

လျှပ်စစ်ပညာရပ်မှာ ယူနစ်တွေကို လူပုဂ္ဂိုလ်ကို ဂုဏ်ပြုပြီး မှည့်ခေါ် ပါတယ်။

ဥပမာ -

ALEXANDRO - VOLTA (အလက်ဇန်းဒြို - ဗိုလ်တာ)

ဘက်ထရီအိုးကို ပထမဆုံးတည်ထွင်ပေးခဲ့လို့ သူ့ကို ဂုဏ်ပြုပြီး လျှပ်စစ်တွန်းအးကို Volt ဗိုယူနစ်နဲ့ ခေါ် ဆိုကြတယ်။ ANDRE - AMPERE (အင်ဒရီ - အင်ပီယာ)

လျှပ်စစ်သံလိုက်ရဲ့ အခြေခံသဘောတရားကို တင်ပြနိုင်ခဲ့လို့ လျှပ်စစ်စီးကြောင်းရဲ့ယူနစ်ကို အင်ပီယာ Ampere (Amp)နဲ့ ခေါ်ဆိုကြတယ်။

George Simon-Ohm

ခုခံမှုနဲ့ပတ်သက်ပြီး နိယာမတရားကို ထုတ်ပြန်နိုင်ခဲ့တယ်။ ဒါကြောင့် ပစ္စည်းတွေရဲ့ ခုခံမှု (Resistance) ရီစစ္စတန့်ကို Ohm အုမ်း (Ω)ယူနစ်နဲ့ ဖော်ပြကြတယ်။

James Watt

ရေနွေးငွေ့အင်ဂျင်ကို ပထမဆုံး တီထွင်ပေးခဲ့တယ်။ လျှပ်စစ်စွမ်းအားပါဝါကို Watt (ဝပ်) ယူနစ်နဲ့ ဖော်ပြတာ တွေ့ရမယ်။

လျှပ်စစ်ဂျင်နရေတာကိုတော့ MICHAEL-FARADAY (မိုက်ကယ်ဖရေးဒေး)က တီထွင်ပေးခဲ့တယ်။ Faradayကို ဂု**က်**ပြုတဲ့အနေနဲ့ "AY"ကိုဖြုတ်ပြီး "FARAD"ဖဲရက်ကို ကွန်ဒင်ဆာရဲ့ယူနစ်အနေနဲ့ ဖော်ပြကြတယ်။

(တ) 10 n = 10 x 10⁻⁹ F = 10 x 10⁻³ x 10⁻⁹ F = 10⁻² µ f = $\frac{1}{100}$ µ f = 0.01 µ f သို့မဟုတ် (103)

.

Gj

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်

(ə)	100 n	=	100 x 10 ^{.4} F
		=	10 ² x 10 ⁻¹ x 10 ⁻⁶ F
		=	10 ⁻¹ µ <i>f</i>
		=	0.1 μƒ వ్ ష ీမဟုတ် (104)
(ი)	330 n	=	330 x 10.º F
		22	330 x 10 ⁻³ x 10 ⁻⁶ F
		=	33 x 10 x 10 ⁻³ x 10 ⁻⁶ F
		12	$33 \times 10^{-2} \mu f$
		=	0.33 µƒ သို့မဟုတ် (334)
(ω)	1000 PF	=	l ΚΡ ဟု ဖော်ပြလေ့ရှိတယ်။ (K = ကီလိုယူနစ်)
		=	10' PF
		=	10 [,] μμ <i>f</i>
		-	10 ³ x 10 ⁻⁶ x μ <i>f</i>
		=	10- ³ μ <i>f</i>
			0

= 0.001 µƒ သို့မဟုတ် (102)

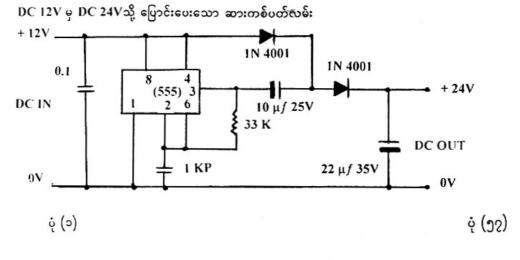
.

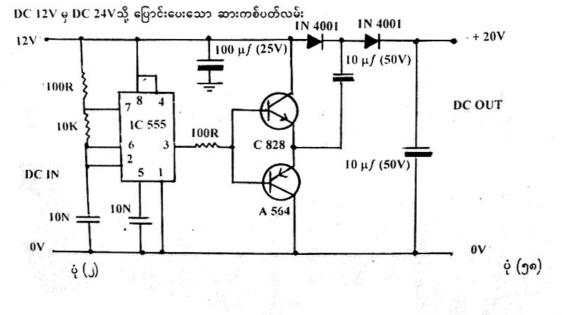
1

အေစီမှ ဒီစီသို့

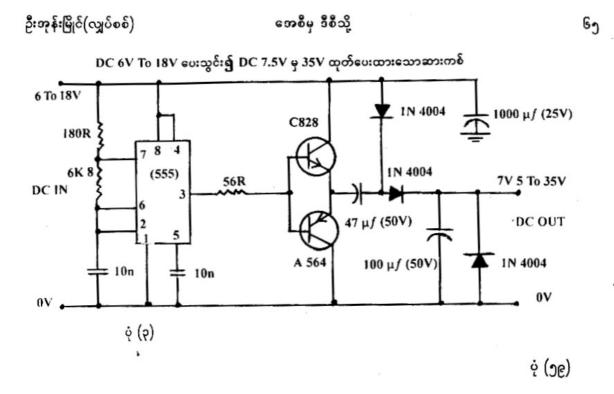
69

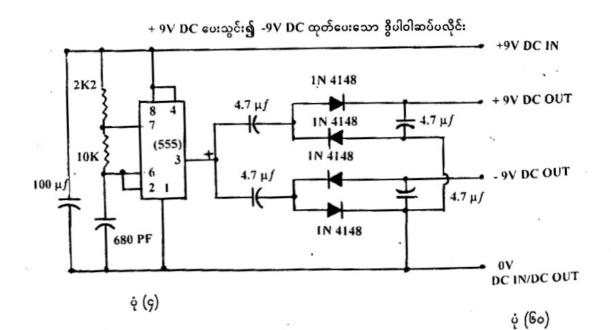
.




ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)


(၉) ကျွန်တော့်အိမ်မှာ အင်ဗာတာအတွက် I20 AH (3K) ဘက်ထရီ I2V ကို အသုံးပြုနေပါတယ်။ တစ်ခါတရံ 24 V DC သုံးချင်ပါတယ်။ ဒီစီဗို့အားနည်းနည်းကနေ များများပြောင်းလို့ရတဲ့ ဆားကစ်များရှိရင် ကျေးဇူးပြုပါခင်ဗျား-

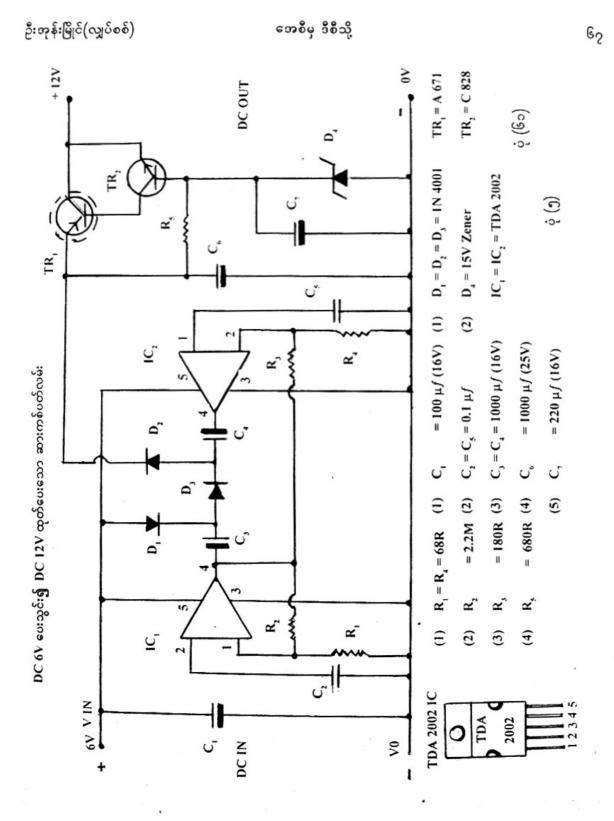

ဖော်ပြပေးလိုက်တဲ့ ဆားကစ်ပတ်လမ်းတွေဟာ ဒီစီမှ ဒီစီပြောင်းတဲ့ ကွန်တတာ (Con Verter) ပတ်လမ်းတွေ ဖြစ်တယ်။ အထွက်ဗို့လည်း နှစ်ဆထွက်လို့ (Direct Voltage Double) လို့ခေါ် တယ်။ ပုံ (၁)ဟာ အဝင် 12V ပေးသွင်းရင် အထွက်ဒီစီနှစ်ဆ 24V ထွက်မယ်။ ပုံ (၂)ဟာလည်း အလားတူပါပဲ။ ပုံ (၃)လည်း အဝင်ဒီစီ 6V မှ 18V အတွင်း ပေးသွင်းရင် အထွက်ဒီစီ 7.5V မှ 35V အထိ ထုတ်ပေးနိုင်တယ်။ သူ့နေရာနဲ့သူ အသုံးဝင်တဲ့ ဆားကစ်ပတ်လမ်းတွေ ဖြစ်တယ်။

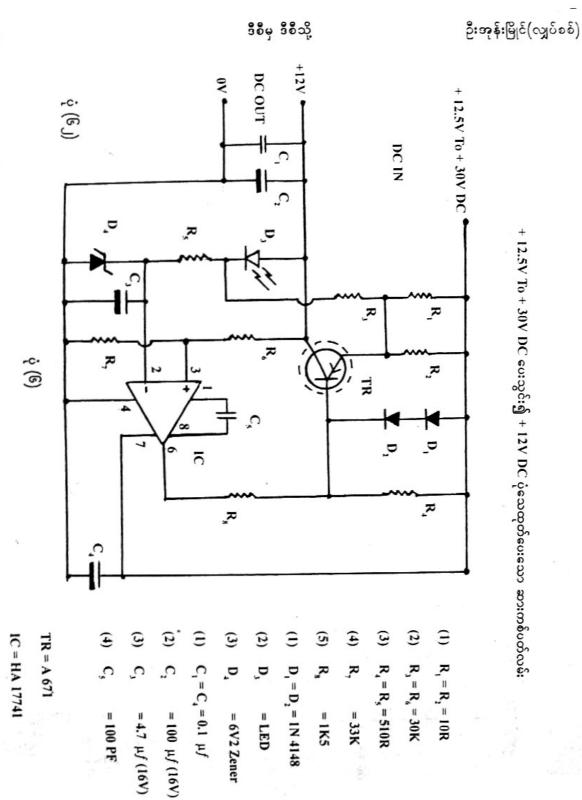
.

66

ဒီစီမှ ဒီစီသို့

ဦးအုန်းမြိုင်(လျှပ်စစ်)


6 Volt ဘက်ထရီအသေးမှ 12 Voltသုံးတဲ့ ကားကက်ဆက်၊ အသံချဲ့စက်တွေမှာ သုံးလို့ရတဲ့ ဆားကစ်ပတ်လမ်း ဖြစ်တယ်။ လျှပ်စီးကြောင်း 1.5 Amp အထိ သုံးနိုင်တယ်၊ ဆားကစ်မှာပါတဲ့ C 828 နဲ့ A 671 ထရန်စစ္စတာနှစ်လုံးဟာ 12Volt အတိအကျ ထွက်စေရန် အသုံးပြုထားတဲ့ Voltage Regulator အပိုင်းဖြစ်တယ်။


ဒိုင်အုပ် IN 4001 မရရင် IN 4007အသုံးပြုနိုင်တယ်။ 1 Amp ခံနိုင်တဲ့ ဒိုင်အုပ်တွေဖြစ်တယ်။ TDA 2002 ICဟာ Audio Power Amplifier မှသုံးတဲ့ အိုင်စီတွေဖြစ်လို့ ဈေးကွက်မှာ လွယ်ကူစွာပဲ ဝယ်ယူနိုင်ပါတယ်။

A 671 အိုင်စီကို အပူစုပ်သတ္တုပြားမှာ တပ်ဆင်ထားရမယ်။

(1)	$R_1 = R_4 = 68R$	(1)	$C_1 = 100 \ \mu f \ 16V$
(2)	R ₂ = 2.2M	(2)	$C_{1} = C_{5} = 0.1 \mu f$
(3)	R ₃ = 180R	(3)	$C_3 = C_4 = 1000 \ \mu f \ 16V$
(4)	$R_s = 680R$	(4)	$C_{6} = 1000 \ \mu f \ 25 V$
		(5)	$C_{7} = 220 \ \mu f \ 16V$
(1)	$D_1 = D_2 = D_3 = 1N 4001$	(1)	$TR_1 = A \ 671$ $IC_1 = IC_2 = TDA \ 2002$
(2)	D ₄ = 15V Zener	(2)	$TR_{2} = C 828$
	$TR_{1} = A 671$		
	$TR_{2} = C 828$		

 $IC_1 = IC_2 = TDA 2002$

60

ြော

.

$$C = 470 \ \mu f (16V) \ (3) \qquad D_{1} = 6V3 \ Zener \ (5) \qquad R_{1} = 18R \ (7) \qquad R_{3} = 1K2$$

$$(2) \qquad D_{1} = 1N \ 4007 \qquad (4) \qquad D_{3} = LED \qquad (6) \qquad R_{2} = 180R \ (8) \qquad R_{4} = 1K$$

$$C = 470 \ \mu f (16V) \ (3) \qquad D_{2} = 6V3 \ Zener \ (5) \qquad R_{1} = 18R \ (7) \qquad R_{3} = 1K2$$

$$(2) \qquad D_{1} = 1N \ 4007 \qquad (4) \qquad D_{3} = LED \qquad (6) \qquad R_{2} = 180R \ (8) \qquad R_{4} = 1K$$

ດາ ເຈົ້າ (1 5V) ເດນ ເວັ່າ ຫຼາຍວາລິເຮີດແລາວ ຫຼາຍຫລົ

အေစီမှ ဒီစီသို့

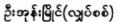
ပုံ (၆၄) 3 V DC နှင့် 6 V DC ထုတ်နိုင်ပြီး ဓာတ်ခဲ 1.5 V နှစ်လုံး အားသွင်းနိုင်သော ဆားကစ်

ဖော်ပြထားတဲ့ ဆားကစ်ပတ်လမ်းမှာ ၂ ုဒီစီဂျက်ပင်မှ 6V DC ထွက်မယ်။ ၂ ့ဒီစီဂျက်ပင်မှ 3V DC ထွက်မယ်။ B နေရာမှာ 1.5V ဓာတ်ခဲ အားသွင်းလို့ရတယ်။ ပါဝင်တဲ့ပစ္စည်းတွေက-

(1)	$R_i = 82R$		(1)	$C_1 = 2200 \ \mu f \ (16V)$	(1)	$D_1 = 1N 4007$
(2)	$R_2 = 330R$,	(2)	$C_2 = 0.01 \ \mu f$	(2)	D ₂ = 3V Zener
			(3)	$C_{3} = 10 \ \mu f$ (16V)		
$TP = U_{10}(1/N) PN = (5 - 1)/9 = (5) TP = (128)$						· .

•

ဒီစီမှ ဒီစီသို့

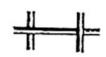

ဦးအုန်းမြိုင်(လျှပ်စစ်)

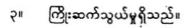
So

"လှိုင်းဝက်" ပတ်ပြီး ပုံသေဖယားကွက်

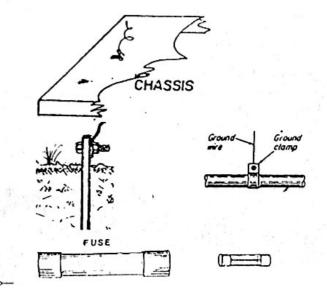
∙ర్	οδ Watt	သံပြားထိပ်	ဖတ်ဧရိယာ	အဝင်ပရို	အဝင်ပရိုင်မာရီကွိုင်		ာထွက်စ	က်ကင်	ဒရီကွိုင်	အပတ်	٩	SWO
		aqexaqe	saltimupe	ຫຈໍຊີຊີ ສຸດສ໌	အဝည်ကေ ၂၁ရမီ	3 V	5 V	6 V	8 V	9 V	12 V	No.
1	10	1/2"x 1/2"	0.25	32	7000	96	160	192	256	288	384	38
2	10	1/2" x 5/8"	0.31	24.2	5600	72.6	72.6	145.2	193.6	217.8	209.4	38
3	12	1/2"x 3/4"	0.37	20	4600	60	100	120	160	180	240	36
4	12	5/8" x 5/8"	0.38	19.6	4560	58.8	98	117.6	156.8	176.4	235.2	36
5	15	5/8" x 3/4"	0.46	16.1	3750	48.3	80.5	96.6	128.8	144.9	193.2	34
6	22	5/8" x 1	0.62	12.2	2800	36.6	61	73.2	97.6	109.8	146.4	. 33
7	20	3⁄4" x 3⁄4"	0.55	13.6	3040	40.8	68	81.6	108.8	122.4	163.2	33
8	25	%" x 1	0.75	10	2300	30	50	60	80	90	120	31
9	30	34" x 134"	0.93	8.1	1860	24.3	40.5	48.6	64.8	72.9	97.2	30
10	50	34" x 11/2"	1.12	6.7	1540	20.1	33.5	40.2	53.6	60.3	80.4	27
11	50	1" x 1"	1	7.5	1720	22.5	37.5	45	60	67.5	90	27
12	60	1" x 1¼"	1.25	6	1380	18	30	. 36	48	54	72	27
13	65	1" x 1½"	1.50	5	1150	15	25	30	40	45	60	26
14	75	1" x 134"	1.75	4.2	980	12.6	21	25.2	33.6	37.8	50.4	26
15	110	1" x 2"	2	3.7	860	11.1	18.5	22.2	29.6	33.3	44.4	24
16	105	114" x 114"	1.56	4.8	1110	14.4	24	28.8	38.4	43.2	57.6	24
17.	100	11/4" x 11/2"	1.87	-3.8	920	11.4	19	22.8	30.4	34.2	45.6	24
18	120	11/4" x 13/4"	2.18	3.5	810	10.5	17.5	21	28	31.5	42	23
19	140	11/4" x 2	2.05	3.2	700	9.6	16	19.2	25.6	28.8	38.4	23
20	125	11/2" x 11/2"	2.25	3.3	760	9.9	16.5	19.8	26.4	29.7	39.6	· 23
21	150	11/2" x 13/4"	2.64	2.9	660	8.7	14.5	17.4	23.2	26.1	34.8	21
22	200	11/2" x 2	3	2.42	580	7.26	12.1	14.52	19.36	21.78	29.04	19
23	300	2" x 2"	4	1.87	430	5.61	9.35	11.22	14.96	16,83	22.44	19
24	400	2" x 2½"	5	1.52	• 350	4:56	7.6	9.12	12.16	13.68	18.24	18
25	500	2" x 3"	6	1.26	290	3.7 8	6.3	7.56	10.08	11.34	15.12	18
6 T.	,	1	I						1	1	1	

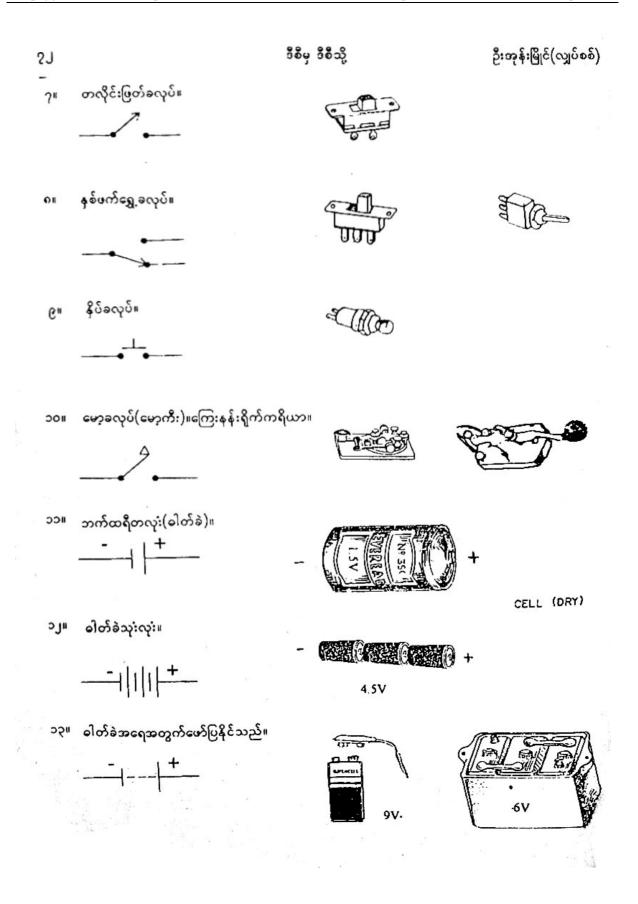
So

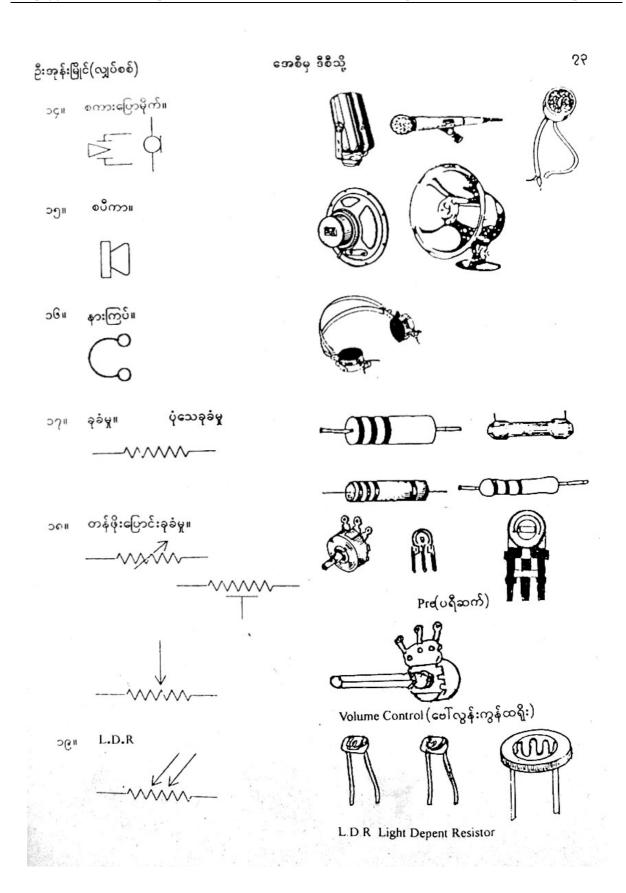

အေစီမှ ဒီစီသို့

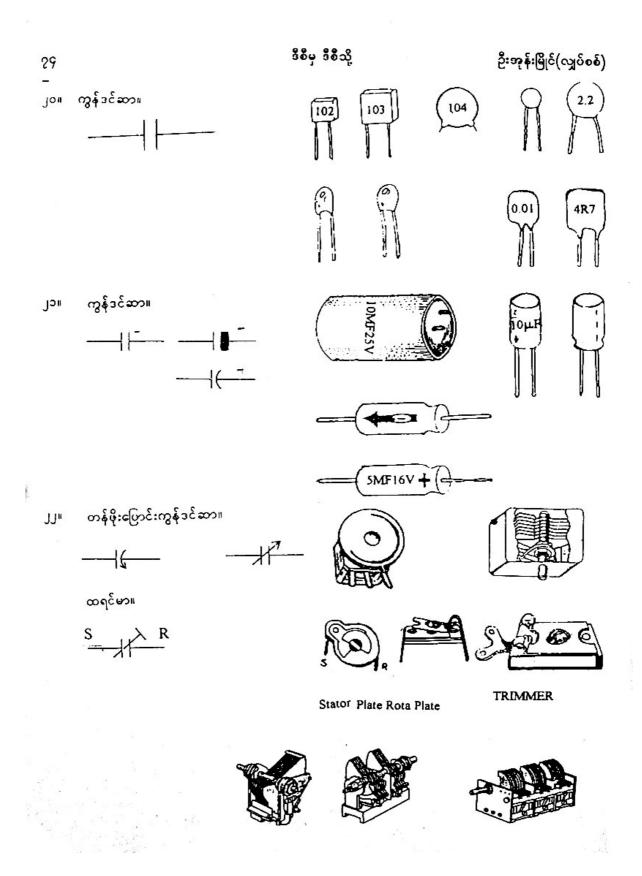

သင်္ကေတပုံများ၏အဓိပ္ပါယ်ဖွင့်ဆိုချက်

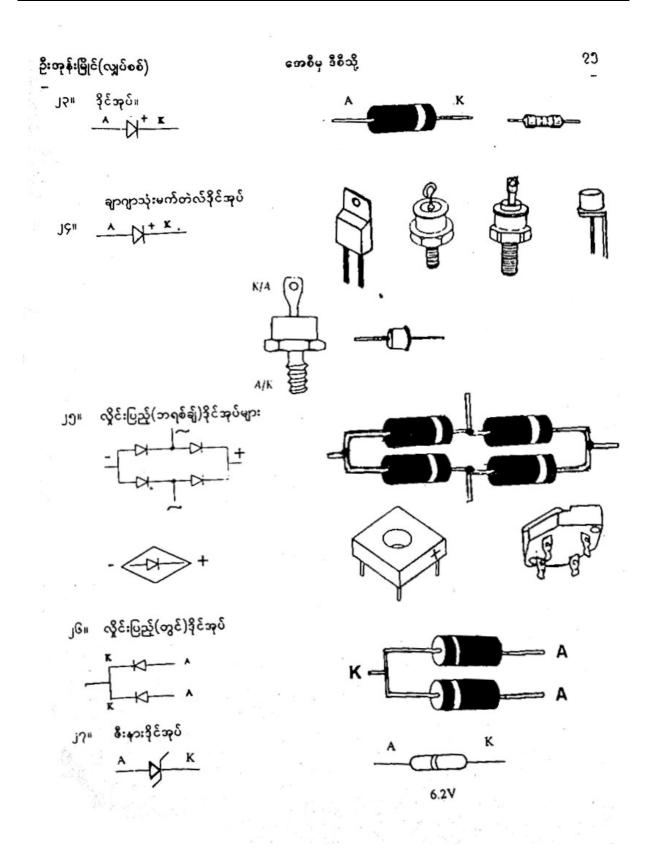
ကြိုးတခုနှင့်တခုကျော်သည်။ J + + + +

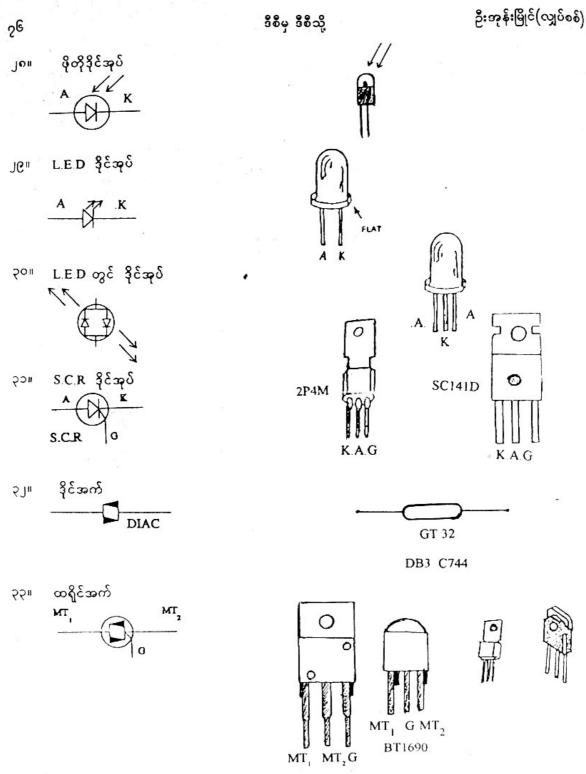



ဘော်ဒီတွင်ဆက်သွယ်ရန်။ ۶u

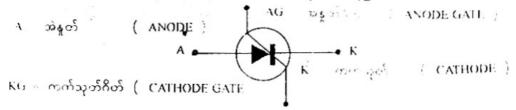





ဖြူးစ် Gı



BTA12


ဦးအုန်းမြိုင်(လျှပ်စစ်)

တောစီမှ ဒီစီသို့

25

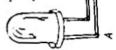
🤧 အက်စ်၊ စီ၊ အက်(စ်) နိုင်အုစ် S.C.S Diode Silicon (Controlled Switch Diode)

ခြေတံလေး<mark>ချောင်းပါတယ်။ S.C.R နှင့်</mark> သဘောတူခြင်း တူညီတယ်။ ခြေတံလေးချောင်းက အဲနုတ် (Anode) အက်သတ် (Cathode)၊ Anode-Gate **အဲနုတ်ဂိတ်၊ Ca**thode-Gate ကက်သုတ်ဂိတ် ဘို့ခြစ်တယ်။

၃၅ ဆိုချင် ခိုင်အုပ် Switching Diode

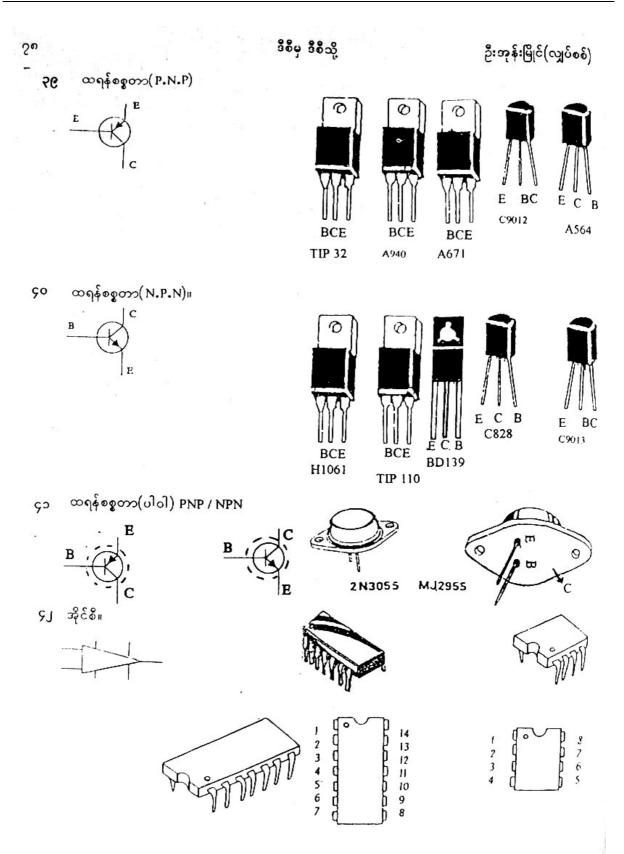
ြိုမ်နှန်းမြင့် ဆားကစ်ပတ်လမ်းတွေမှာ သုံးတယ်။ အဖွင့်/အပိတ် ခလုတ်သဖွယ် အလုပ်၊ လုပ်ပေးတယ်။ မင့်ကွက်မှာတော့ နံပါတ် IN 4148 အသုံးများတယ်။ IN914 လဲ ရှိတယ်။ Signal Diode အတန်းအစားမှာ ပါဝင်တယ်။

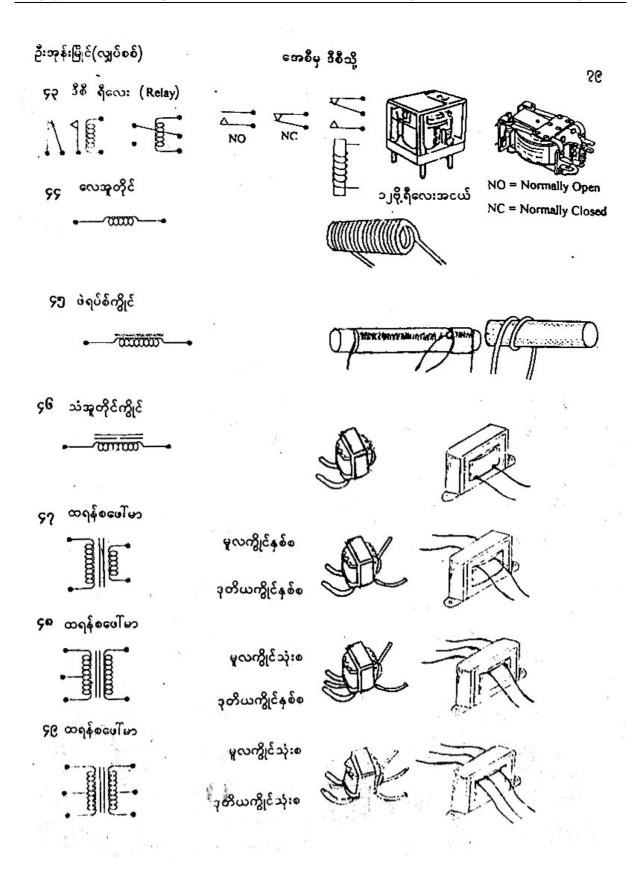
26 L.C.D (Liquid Crystal Display) Seven Segment L.E.D

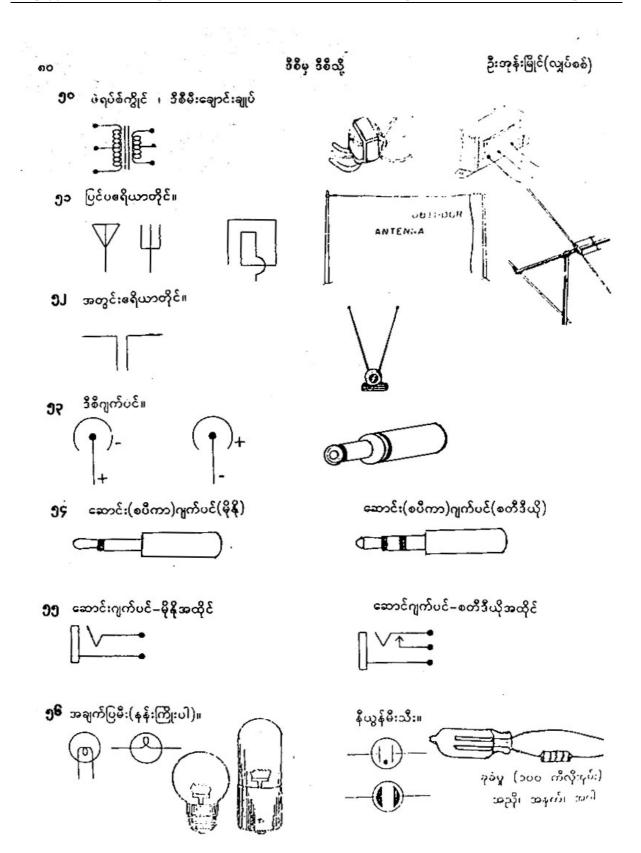

Seven Segment L.E.D ဟုခေါ်တယ်။

္မမတ်တဲ့နေရာမှာသုံးတယ်။ L.E.D ခွန်နှစ်လုံးပါတယ်။ ကက်သုတ်-မြေစိုက် (Negative Volt) ရှိသလို၊ အံနတ်-မာတင်း (Anode-Ground) အဲနုတ်မြေစိုက် အပိုင်းလဲ ရှိပါတယ်။

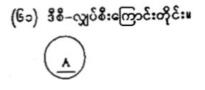
?? Infrared L.E.D (IR- L.E.D


အနီအောက်ရောင်ခြည် လှိုင်းကို ထုတ်ပေးတဲ့ LED ဖြစ်လို့ (T.V Remove) မှာ သုံးတယ်။




၃၈ တရက်တာဒိုင်အုပ် Varactor Diode (Variable Capactance diode)

ယင်းဒိုင်အုပ်အား ကျူးရှ<mark>င်းကွန်ဒင်ဆာလို လုပ်ဆောင်ပေးပါတယ်။ အဆင့်မြင့်</mark> ရေဒီယိုကက်ဆက်များငံ Digitai Linter များမှာ တီဗီ၊ ဗီဒီယိုတွေရဲ့ **Tuner များမှာ သုံးတာ တွေ့ရတယ်။**

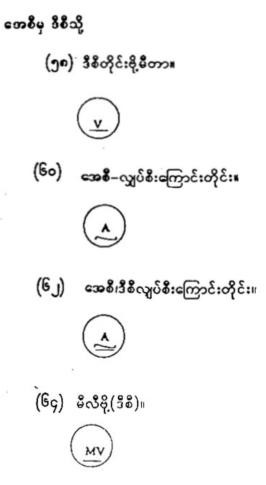

ဦးအုန်းမြိုင်(လျှပ်စစ်)

(၅၇) အေစီတိုင်းဗို့မီတာ။

Ľ

(၅၉) အေစီ၊ဒီစီ၊ဗို့နှစ်မျိုးတိုင်း။

Ľ



(၆၅) လျှပ်ထုတ်စက်။

၆၇) အသံမြည်ကရိယာ(ဘာel)။ +______

(၆၉) အထွက်ဆော်ကက်မြေစိုက်ကြိုးပါ။

66 ဒိစိမော်တာ။

(၆၈) အထွက်ဆော့ကက်။

(၇၀) ကက်ဆက်ခေါင်း။ []] **n**0